Skip to main content

Cerebral Cortex

  • Chapter
  • First Online:
Noback's Human Nervous System, Seventh Edition

Abstract

The cerebral cortex is the 600-g gray covering of the cerebrum, constituting about 40% of the brain by weight and containing up to 100 billion or more neurons. The most conspicuous structural feature of the cortex is its organization into layers which are oriented parallel to the surface (Fig. 25.1). The cerebral cortex in mammals is divided into a phylogenetically older allocortex, about 10% of the total, and the more recently evolved six layered neocortex (isocortex), about 90% of the cortex in humans. The allocortex, which does not receive thalamic input, consists of the ancient three-layered archicortex, which is limited to the hippocampal formation (hippocampus and dentate gyrus), and the paleocortex, composed of the six-layered parahippocampal gyrus, and the olfactory cortex or uncus. The mesocortex which is structurally transitional between the neocortex and the allocortex, includes the cingulate gyrus, fasciolar gyrus, and the isthmus (Fig. 1.7). The allocortex and mesocortex incorporate the limbic lobe (Chap. 1), an artificial construct formed from parts of other lobes and located on the medial aspect of the hemisphere, where it forms a ring around the corpus callosum and rostral brainstem. The neocortex consists of the cortex of the frontal, parietal, occipital, temporal, and central lobes, excluding the allocortex (Chap. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Arbib MA. 2003. Language evolution: the mirror system hypothesis. In: The Handbook of Brain Theory and Neural Networks. 2nd ed. Arbib MA, ed. Cambridge, MA: MIT Press: 606–611.

    Google Scholar 

  • Arbib MA, Billard A, Iacoboni M, Oztop E. 2000. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw. 13:975–997.

    Google Scholar 

  • Blake DT, Byl NN, Merzenich MM. 2002. Representation of the hand in the cerebral cortex. Behav Brain Res. 135:179–184.

    Google Scholar 

  • Borsook D, Becerra L, Fishman S, et al. 1998. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport. 9:1013–1017.

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K, Garey LJ. 1999. Brodmann’s Localisation in the Cerebral Cortex. (Translated from 1909 publication with editorial notes and introduction by Laurence Garey.) London: Imperial College Press.

    Google Scholar 

  • Damasio AR, Damasio H. 1992. Brain and language. Sci Am. 267:88–95.

    Article  PubMed  CAS  Google Scholar 

  • Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. 1994. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science. 264:1102–1105.

    Article  PubMed  CAS  Google Scholar 

  • Douglas R, Keyan AC. 2004. Neuronal Circuits of the Neocortex. Ann Rev Neurosci. 27:419–451.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari PF, Gallese V, Rizzolatti G, Fogassi L. 2003. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur J Neurosci. 17:1703–1714.

    Article  PubMed  Google Scholar 

  • Funnell MG, Corballis PM, Gazzaniga MS. 2003. Temporal discrimination in the split brain. Brain Cogn. 53:218–222.

    Article  PubMed  Google Scholar 

  • Gazzaniga MS, Ivry RB, Mangun G.R. 2002. Cognitive Neuroscience: The Biology of the Mind. New York: Norton.

    Google Scholar 

  • Gazzaniga MS. 1989. Organization of the human brain. Science. 245:947–952.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N. 1979. Specializations of the human brain. Sci Am. 241:180–201.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS. 1996. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil Trans R Soc Lond B Biol Sci. 351:1445–1453.

    Article  CAS  Google Scholar 

  • Goldman-Rakic PS. 1998. The cortical dopamine system: role in memory and cognition. Adv. Pharmacol. 42:707–711.

    Article  PubMed  CAS  Google Scholar 

  • Grezes J, Armony JL, Rowe J, Passingham RE. 2003. Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage. 18:928–937.

    Article  PubMed  CAS  Google Scholar 

  • Hamzei F, Rijntjes M, Dettmers C, Glauche V, Weiller C, Buchel C. 2003. The human action recognition system and its relationship to Broca’s area: an fMRI study. Neuroimage. 19:637–644.

    Article  PubMed  Google Scholar 

  • Handy TC, Gazzaniga MS, Ivry RB. 2003. Cortical and subcortical contributions to the representation of temporal information. Neuropsychologia. 41:1461–1473.

    Article  PubMed  Google Scholar 

  • Harris JC. 2003. Social neuroscience, empathy, brain integration, and neurodevelopmental disorders. Physiol. Behav. 79:525–531.

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Petit L, Ungerleider LG, Courtney SM. 2000. Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage. 11:145–156.

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH. 1987. Eye, Brain, and Vision. New York: Scientific American Library.

    Google Scholar 

  • Jenkins WM, Merzenich MM. 1987. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 71:249–266.

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH. 1987. The organization of neocortex in mammals: implications for theories of brain function. Annu Rev Psychol. 38:129–151.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ, Crowdon JH 2002. Alzheimer’s disease. In: Kelleher LH, et al., eds. Diseases of the Nervous System, Clinical Neuroscience and Therapeutic Principles. 3rd ed. New York: Cambridge University Press, 237–251.

    Google Scholar 

  • Keysers C, Kohler E, Umilta MA, Nanetti L, Fogassi L, Gallese V. 2003. Audiovisual mirror neurons and action recognition. Exp Brain Res. 153:628–636.

    Article  PubMed  CAS  Google Scholar 

  • Kroll NE, Yonelinas AP, Kishiyama MM, Baynes K, Knight RT, Gazzaniga MS. 2003. The neural substrates of visual implicit memory: do the two hemispheres play different roles? J Cogn Neurosci. 15:833–842.

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Goldman-Rakic PS. 1999. Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J Neurosci. 19: 5149–5158.

    PubMed  CAS  Google Scholar 

  • Liu X, Robertson E, Miall RC. 2003. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 89: 1223–1237.

    Article  PubMed  Google Scholar 

  • Merzenich M. 2000. Cognitive neuroscience. Seeing in the sound zone. Nature. 404:820–821.

    CAS  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. 1984. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 224: 591–605.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich M, Wright B, Jenkins W, et al. 1996. Cortical plasticity underlying perceptual, motor, and cognitive skill development: implications for neurorehabilitation. Cold Spring. Harbor Symp Quant Biol. 61:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Miall RC. 2003 Connecting mirror neurons and forward models. Neuroreport. 14:2135–2137.

    Article  PubMed  CAS  Google Scholar 

  • Miller MB, Van Horn JD, Wolford GL, et al. 2002. Extensive individual differences in brain activations associated with episodic retrieval are reliable over time. J Cogn Neurosci. 14:1200–1214.

    Article  PubMed  Google Scholar 

  • Milner B. 2005. The medial temporal-lobe amnesic syndrome. Psychiatr. Clin N Am. 28:599–611.

    Article  Google Scholar 

  • Mishkin M, Appenzeller T. 1987. The anatomy of memory. Sci Am. 256:80–89.

    Article  PubMed  CAS  Google Scholar 

  • Nicolelis MA. 2003. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Rev Neurosci. 4:417–422.

    Article  CAS  Google Scholar 

  • Oztop E, Arbib MA. 2002. Schema design and implementation of the grasp-related mirror neuron system. Biol Cybern. 87:116–140.

    Article  PubMed  Google Scholar 

  • Penfield W, Roberts L. 1981. Speech and Brain Mechanisms. Princeton: Princeton University Press.

    Google Scholar 

  • Ramachandran VS, Stewart M, Rogers-Ramachandran DC. 1992. Perceptual correlates of massive cortical reorganization. Neuroreport. 3:583–586.

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Arbib MA. 1998. Language within our grasp. Trends Neurosci. 21:188–194.

    Article  PubMed  CAS  Google Scholar 

  • Solso RL. 1997. Mind and Brain Sciences in the 21st Century. Cambridge, MA: MIT Press.

    Google Scholar 

  • Squire LR and Schacter DL. 2002. Neuropsychology of Memory. New York: Guilford Press.

    Google Scholar 

  • Squire LR, Zola-Morgan S. 1988. Memory: brain systems and behavior. Trends Neurosci. 11:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai J. 1978. The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond B Biol Sci. 201:219–248.

    Article  CAS  Google Scholar 

  • Thompson RF, Krupa DJ. 1994. Organization of memory traces in the mammalian brain. Annu Rev Neurosc. 17:519–549.

    Google Scholar 

  • Turk DJ, Heatherton TF, Kelley WM, Funnell MG, Gazzaniga MS, Macrae CN. 2002. Mike or me? Self-recognition in a split-brain patient. Nature Neurosci. 5:841–842.

    Article  PubMed  CAS  Google Scholar 

  • Van Horn JD, Gazzaniga MS. 2002. Opinion: Databasing fMRI studies towards a discovery science’ of brain function. Nature Rev Neurosci. 3:314–318.

    Article  Google Scholar 

  • Xerri C, Merzenich MM, Jenkins W, Santucci S. 1999. Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cereb Cortex. 9:264–276.

    Article  PubMed  CAS  Google Scholar 

  • Zeki S. 1999. Inner Vision: An Exploration of Art and the Brain. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strominger, N.L., Demarest, R.J., Laemle, L.B. (2012). Cerebral Cortex. In: Noback's Human Nervous System, Seventh Edition. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-779-8_25

Download citation

Publish with us

Policies and ethics