Skip to main content

Methods to Detect Biomarkers of Cellular Senescence

The Senescence-Associated β-Galactosidase Assay

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 371))

Abstract

Most normal human cells undergo cellular senescence after accruing a fixed number of cell divisions, or are challenged by a variety of potentially oncogenic stimuli, in culture and most likely in vivo. Cellular senescence is characterized by an irreversible growth arrest and certain altered functions. Senescent cells in culture are identified by their inability to undergo DNA synthesis, a property also shared by quiescent cells. Several years ago, we described a biomarker associated with the senescent phenotype, a senescence associated β-galactosidase (SA-β-gal), which is detected by histochemical staining of cells using the artificial substrate X-gal. The presence of the SA-β-gal biomarker is independent of DNA synthesis and generally distinguishes senescent cells from quiescent cells. The method to detect SA-β-gal is a convenient, single cell-based assay, which can identify senescent cells even in heterogeneous cell populations and aging tissues, such as skin biopsies from older individuals. Because it is easy to detect, SA-β-gal is currently a widely used biomarker of senescence. Here we describe a method to detect SA-β-gal in detail, including some recent modifications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.

    Article  Google Scholar 

  2. Campisi, J. (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31.

    CAS  PubMed  Google Scholar 

  3. Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522

    Article  CAS  PubMed  Google Scholar 

  4. de Lange, T. (2001) Cell biology. Telomere capping—one strand fits all. Science 292, 1075–1076.

    Article  PubMed  Google Scholar 

  5. Itahana, K., Campisi, J., and Dimri, G. P. (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5, 1–10.

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8–13.

    CAS  PubMed  Google Scholar 

  7. Dimri, G. P., Lee, X., Basile, G., et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367.

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamurthy, J., Torrice, C., Ramsey, M. R., et al. (2004) Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307.

    CAS  PubMed  Google Scholar 

  9. Cao, L., Li, W., Kim, S., Brodie, S. G., and Deng, C. X. (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 17, 201–213.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L. Q., Lee, D. W., Zhang, Q., et al. (2004) Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev. 18, 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  11. Choi, J., Shendrik, I., Peacocke, M., et al. (2000) Expression of senescenceassociated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 56, 160–166.

    Article  CAS  PubMed  Google Scholar 

  12. Castro, P., Giri, D., Lamb, D., and Ittmann, M. (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55, 30–38.

    Article  CAS  PubMed  Google Scholar 

  13. Ferlicot, S., Durrbach, A., Ba, N., Desvaux, D., Bedossa, P., and Paradis, V. (2003) The role of replicative senescence in chronic allograft nephropathy. Hum. Pathol. 34, 924–928.

    Article  PubMed  Google Scholar 

  14. Mishima, K., Handa, J. T., Aotaki-Keen, A., Lutty, G. A., Morse, L. S., and Hjelmeland, L. M. (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest. Ophthalmol Vis. Sci. 40, 1590–1593.

    CAS  PubMed  Google Scholar 

  15. Melk, A., Schmidt, B. M., Takeuchi, O., Sawitzki, B., Rayner, D. C., and Halloran, P. F. (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 65, 510–520.

    Article  CAS  PubMed  Google Scholar 

  16. Pendergrass, W. R., Lane, M. A., Bodkin, N. L., et al. (1999) Cellular proliferation potential during aging and caloric restriction in rhesus monkeys (Macaca mulatta). J. Cell. Physiol. 180, 123–130.

    Article  CAS  PubMed  Google Scholar 

  17. Di Leonardo, A., Linke, S. P., Clarkin, K., and Wahl, G. M. (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551.

    Article  PubMed  Google Scholar 

  18. Robles, S. J. and Adami, G. R. (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  19. Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., and Alt, F. W. (2005) DNA repair, genome stability, and aging. Cell 120, 497–512.

    Article  CAS  PubMed  Google Scholar 

  20. von Zglinicki, T., Saretzki, G., Docke, W., and Lotze, C. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186–193.

    Article  Google Scholar 

  21. Chen, Q. M., Bartholomew, J. C., Campisi, J., Acosta, M., Reagan, J. D., and Ames, B. N. (1998) Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332 (Pt 1), 43–50.

    CAS  PubMed  Google Scholar 

  22. Blander, G., de Oliveira, R. M., Conboy, C. M., Haigis, M., and Guarente, L. (2003) Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J. Biol. Chem. 278, 38,966–38,969.

    Article  CAS  PubMed  Google Scholar 

  23. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007.

    Article  CAS  PubMed  Google Scholar 

  25. Dimri, G. P., Itahana, K., Acosta, M., and Campisi, J. (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285.

    Article  CAS  PubMed  Google Scholar 

  26. Ohtani, N., Zebedee, Z., Huot, T. J., et al. (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  27. Kato, D., Miyazawa, K., Ruas, M., et al. (1998) Features of replicative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett. 427, 203–208.

    Article  CAS  PubMed  Google Scholar 

  28. Pearson, M., Carbone, R., Sebastiani, C., et al. (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210.

    Article  CAS  PubMed  Google Scholar 

  29. Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S. W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027.

    CAS  PubMed  Google Scholar 

  30. Itahana, K., Zou, Y., Itahana, Y., et al. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Itahana, K., Campisi, J., Dimri, G.P. (2007). Methods to Detect Biomarkers of Cellular Senescence. In: Tollefsbol, T.O. (eds) Biological Aging. Methods in Molecular Biology™, vol 371. Humana Press. https://doi.org/10.1007/978-1-59745-361-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-361-5_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-658-0

  • Online ISBN: 978-1-59745-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics