Skip to main content

Structural Adaptations of Early Archaeocete Long Bones

  • Chapter

Part of the book series: Advances in Vertebrate Paleobiology ((AIVP,volume 1))

Abstract

Fossil remains recovered during the past decade have provided the first glimpse of the appendicular skeleton of early cetaceans (Gingerich et al., 1990, 1993, 1994, 1995; Hulbert and Petkewich, 1991; Aleshire, 1993; Madar and Thewissen, 1994; Hulbert, 1994, this volume; Thewissen et al., 1994, 1996). When coupled with archaeocete craniofacial, dental, and axial remains, a much clearer picture is emerging of the morphological transitions that occurred during cetacean evolution. The ancestry of modern cetaceans is linked at present to the terrestrial mesonychian condylarths (Van Valen, 1966; Prothero et al., 1988; Thewissen, 1994). Members of this group possess postcranial features linked to cursoriality, though emphasizing endurance rather than speed (Szalay and Gould, 1966; Zhou et al., 1992; O’Leary and Rose, 1995). Given this ancestry, early archaeocete postcranial skeletons should document the series of structural modifications that occurred in a move from complete terrestrial competence, through an amphibious or semiaquatic stage, to the type of highly specialized aquatic locomotion that characterizes modern cetaceans (Thewissen et al., 1996; Thewissen and Fish, 1997; Buchholtz, this volume).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleshire, D. P. 1993. Functional morphology and locomotion in an early Eocene protocetid from Georgia. J. Vertebr. Paleontol. 13:24A.

    Article  Google Scholar 

  • Backhouse, K. M. 1961. Locomotion of seals with particular reference to the forelimb. Symp. Zool. Soc. London 5:59–75.

    Google Scholar 

  • Barnes, L. G., and Mitchell, E. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Berta, A., Ray, C. E., and Wyss, A. R. 1989. Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science 244:60–62.

    Article  PubMed  CAS  Google Scholar 

  • Buffrénil, V., de, Ricqlès, A. de, Ray, C. E., and Domning, D. P. 1990. Bone histology of the ribs of the archaeocetes (Mammalia, Cetacea). J. Vertebr. Paleontol. 10(4):455–466.

    Article  Google Scholar 

  • Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. Freeman, San Francisco.

    Google Scholar 

  • Carter, D. R., Orr, T. E., and Fyhrie, D. P. 1989. Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22:231–244.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D. R., Wong, M., and Orr, T. E. 1991. Musculoskeletal ontogeny, phylogeny, and functional adaptation. J. Biomech. 24:3–16.

    Article  PubMed  Google Scholar 

  • Currey, J. D. 1984. The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Currey, J. D., and Alexander, R. M. 1985. The thickness of the walls of tubular bones. J. Zool. London (A) 206:453–468.

    Article  Google Scholar 

  • Daniel, T. L., and Webb, P. W. 1987. Physical determinants of locomotion, in: P. DeJours, L. Bolis, C. R. Taylor, and E. R. Weibel (eds.), Comparative Physiology: Life in Water and on Land, pp. 343–369. Liviana Press, New York.

    Google Scholar 

  • Domning, D. P., and Buffrénil, V. de 1991. Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar. Mamm. Sci. 7(4):331–368.

    Article  Google Scholar 

  • English, A. W. 1977. Structural correlates of forelimb function in für seals and sea lions. J. Morphol. 151:325–352.

    Article  PubMed  CAS  Google Scholar 

  • Enlow, D. H. 1964. Principles of Bone Remodeling. Thomas, Springfield, IL.

    Google Scholar 

  • Felts, W. J., and Spurrell, F. A. 1965. Structural orientation and density in cetacean humeri. Am. J. Anat. 116:171–204.

    Article  PubMed  CAS  Google Scholar 

  • Felts, W. J. L., and Spurrell, F. A. 1966. Some structural and developmental characteristics of cetacean (Odontocete) radii. A study of adaptive osteogenesis. Am. J. Anat. 118:103–134.

    Article  PubMed  CAS  Google Scholar 

  • Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36:628–641.

    Google Scholar 

  • Fish, F. E., and Stein, B. R. 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorph. 110:339–345.

    Article  Google Scholar 

  • Gingerich, P. D., and Uhen, M. D. 1996. Ancalecetus simonsi, a new dorudontine archaeocete (Mammalia, Cetacea) from the early late Eocene of Wadi Hitan, Egypt. Contrib. Mus. Paleontol. Univ. Michigan 29(13):359–401.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1993. Partial skeletons of Indocetus ramani (Mammalia, Cetacea) from the lower middle Eocene Domanda Shale in the Sulaiman Range of Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 28(16):393–416.

    Google Scholar 

  • Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.

    Article  Google Scholar 

  • Gingerich, P. D. Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 29(11):291–330.

    Google Scholar 

  • Howell, A. B. 1930. Aquatic Mammals: Their Adaptation to Life in the Water. Thomas, Springfield, IL.

    Google Scholar 

  • Hulbert, R. C., Jr. 1994. Phylogenetic analysis of Eocene whales (“Archaeoceti”) with a diagnosis of a new North American protocetid genus. J. Vertebr. Paleontol. 14:30A.

    Google Scholar 

  • Hulbert, R. C., Jr., and Petkewich, R. M. 1991. Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia. J. Vertebr. Paleontol. 11:36A.

    Google Scholar 

  • Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.

    Google Scholar 

  • Kooyman, G. L. 1973. Respiratory adaptations in marine mammals. Am. Zool. 13:457–468.

    Google Scholar 

  • Kooyman, G. L. 1989. Diverse Divers. Springer, Berlin.

    Book  Google Scholar 

  • Madar, S. I., and Thewissen, J. G. M. 1994. Vertebral morphology of Ambulocetus, an Eocene cetacean from the Kuldana Formation (Pakistan). J. Vertebr. Paleontol. 14:35A.

    Google Scholar 

  • Massare, J. 1994. Swimming capabilities of Mesozoic marine reptiles: a review, in: L. Maddock, Q. Bone, and J. V. M. Rayner (eds.), Mechanics and Physiology of Animal Swimming, pp. 133–150. Cambridge University Press, London.

    Chapter  Google Scholar 

  • Meister, W. 1962. Histological structure of the long bones of penguins. Anat. Rec. 143:377–388.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, R. M. 1991. Walker’s Mammals of the World, 5th ed. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • O’Leary, M. A., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia, Mesonychia). J. Vertebr. Paleontol. 15:401–430.

    Article  Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phytogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.

    Google Scholar 

  • Ridgway, S. H., and Howard, R. 1979. Dolphin lung collapse and intra-muscular circulation during free diving: Evidence from nitrogen washout. Science 206:1182–1183.

    Article  PubMed  CAS  Google Scholar 

  • Slijper, E. J. 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh. K. Ned. Akad. Wet. Afd. Natuurkd. 62:1–128.

    Google Scholar 

  • Stein, B. R. 1989. Bone density and adaptation in semi-aquatic mammals. J. Mammal. 70:467–476.

    Article  Google Scholar 

  • Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). Bull. Am. Mus. Nat. Hist. 132:129–173.

    Google Scholar 

  • Taylor, M. A. 1994. Stone, bone or blubber? Buoyancy control strategies in aquatic tetrapods, in: L. Maddock, Q. Bone, and J. M. V. Rayner (eds.), Mechanics and Physiology of Animal Swimming, pp. 151–209. Cambridge University Press, London.

    Chapter  Google Scholar 

  • Taylor, W. P. 1914. The problem of aquatic adaptation in the Carnivora, as illustrated in the osteology and evolution of the sea otter. Bull. Dep. Geol. Univ. Calif. 7(25):465–495.

    Google Scholar 

  • Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2(3):157–184.

    Article  Google Scholar 

  • Thewissen, J. G. M., and Fish, F. E. 1997. Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 123:482–490.

    Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. 1990. Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat. Histol. Embryol. 19:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-lnst. Senckenberg 191:1–86.

    Google Scholar 

  • Uhen, M. D. 1996. Dorudon atrox (Mammalia, Cetacea): form, function, and phylogenetic relationships of an archaeocete from the late middle Eocene of Egypt. Ph.D. dissertation, University of Michigan, Ann Arbor, 608 pp.

    Google Scholar 

  • Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.

    Google Scholar 

  • Wall, W. P. 1983. The correlation between high limb-bone density and aquatic habits in recent mammals. J. Paleontol. 57(2):197–207.

    Google Scholar 

  • Webb, P. W. 1988. Simple physical principles and vertebrate aquatic locomotion. Am. Zool. 28:709–725.

    Google Scholar 

  • Webb, P. W., and Buffrénil, V. de 1990. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119:629–641.

    Article  Google Scholar 

  • Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Functional and behavioral implication of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib. Mus. Paleontol. Univ. Michigan 28:289–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madar, S.I. (1998). Structural Adaptations of Early Archaeocete Long Bones. In: Thewissen, J.G.M. (eds) The Emergence of Whales. Advances in Vertebrate Paleobiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0159-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0159-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0161-3

  • Online ISBN: 978-1-4899-0159-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics