Skip to main content

Organic Sulfur Compounds in the Environment Biogeochemistry, Microbiology, and Ecological Aspects

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

More than a decade has elapsed since the review in Advances by Bremner and Steele (1978) of the role of microorganisms in the atmospheric sulfur cycle. In the intervening decade or so, the dawning realization in the 1970s that volatile organic sulfur compounds are major components of the global sulfur cycle has developed from informed speculation to the status of established fact, supported by ever-accumulating data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackermann, D. G., Haro, M. T., Richard, G., Takata, A. M., Weiler, P. J., Bean, D. J., Cornaby, B. W., Mihlan, G. J., and Rogers, S. E., 1980, Health Impacts, Emissions, and Emission Factors for Noncriterra Pollutants Subject to De Minimus Guidelines and Emitted from Stationary Conventional Combustion Processes, U.S. Environmental Protection Agency, Report EPA-450/2-80-074.

    Google Scholar 

  • Ackman, R. G., Tocher, C. S., and McLachlan, J., 1966, Occurrence of dimethyl-β-propiothetin in marine phytoplankton, J. Fish. Res. Board Can. 23: 357.

    CAS  Google Scholar 

  • Adams, D. F., Farwell, S. O., Robinson, E., Pack, M. R., and Bamesberger, W. L., 1981, Biogenic sulfur source strengths, Environ. Sci. Technol. 15: 1493.

    CAS  Google Scholar 

  • Albone, E. S., 1984, Mammalian Semiochemistry, Wiley, Chichester.

    Google Scholar 

  • Albone, E. S., Gosden, P. E., and Ware, G. C., 1977, Bacteria as a source of chemical signals in mammals, in: Chemical Signals in Vertebrates (D. Mueller-Schwarze and M. M. Mozell, eds.), pp. 35–43, Plenum Press, New York.

    Google Scholar 

  • Albone, E. S., Gosden, P. E., Ware, G. C., Macdonald, D. W., and Hough, N. G., 1978, Bacterial action and chemical signalling in the red fox (Vulpes vulpes) and other mammals, in: Flavor Chemistry of Animal Foods (R. W. Bullard, ed.), pp. 78–91, ACS Symposium Series 67, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Amphlett, M. J., 1968, The Microbiological Transformation of Sulphur-Containing Aromatic Compounds, Ph.D. thesis, University of Wales.

    Google Scholar 

  • Andersen, K. K., and Bernstein, D. T., 1975, Some chemical constituents of the scent of the striped skunk Mephitis mephitis, J. Chem. Ecol. 1: 493.

    CAS  Google Scholar 

  • Andersen, K. K., Bernstein, D. T., Caret, R. L., and Romanczyk, L. J., 1982, Chemical constituents of the defensive secretion of the striped skunk Mephitis mephitis, Tetrahedron 38: 1965.

    CAS  Google Scholar 

  • Anderson, R., Kates, M., and Volcani, B. E., 1976, Sulphonium analogues of lecithin in diatoms, Nature (London) 263: 51.

    CAS  Google Scholar 

  • Ando, H., Kumagai, M., Karashimada, T., and Iida, H., 1957, Diagnostic use of dimethyl sulfoxide reduction test within Enterobacteriaceae, Jpn. J. Microbiol. 1: 335.

    PubMed  CAS  Google Scholar 

  • Andreae, M. O., 1980a, Dimethyl sulfoxide in marine and fresh waters, Limnol. Oceanogr. 25: 1054.

    CAS  Google Scholar 

  • Andreae, M. O., 1980b, The production of methylated sulfur compounds by marine phytoplankton, in: Biogeochemistry of Ancient and Modern Environments (P. A. Trudinger and M. R. Walter, eds.), pp. 253–259, Springer Verlag, Berlin.

    Google Scholar 

  • Andreae, M. O., 1985, The emission of sulfur to the remote atmosphere: A background paper, in: The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (J. N. Galloway, ed.), pp. 5–25, Reidel, New York.

    Google Scholar 

  • Andreae, M. O., 1986, The ocean as a source of atmospheric sulfur compounds, in: The Role of Air-Sea Exchange in Geochemical Cycling (P. Buat-Menard, ed.), pp. 331–362, Reidel, New York.

    Google Scholar 

  • Andreae, M. O., and Barnard, W. R., 1984, The marine chemistry of dimethyl sulfide, Mar. Chem. 14: 267.

    CAS  Google Scholar 

  • Andreae, M. O., and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, Science 221: 744.

    PubMed  CAS  Google Scholar 

  • Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979a, Direct measurements of emission rates of some atmospheric biogenic sulfur compounds, Tellus 31: 174.

    CAS  Google Scholar 

  • Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979b, Carbon disulphide and carbonyl sulphide from biogenic sources and their contributions to the global sulphur cycle, Nature (London) 282: 493.

    CAS  Google Scholar 

  • Anness, B. J., 1980, The reduction of dimethylsulphoxide to dimethyl sulphide during fermentation, J. Inst. Brewing 86: 134.

    CAS  Google Scholar 

  • Anness, B. J., and Bamforth, C. W., 1982, Dimethyl sulphide—a review, J. Inst. Brewing 88: 244.

    CAS  Google Scholar 

  • Anness, B. J., Bamforth, C. W., and Wainwright, T., 1979, The measurement of dimethyl sulfoxide in barley and malt and its reduction to dimethyl sulfide by yeast, J. Inst. Brewing 85: 346.

    CAS  Google Scholar 

  • Anonymous, 1955, Recommendations of the International Commission on Radiological Protection, Br. J. Radiol., Suppl. 6.

    Google Scholar 

  • Ashworth, J., Briggs, G. G., Evans, A. A., and Matula, J., 1977, Inhibition of nitrification by nitrapyrin, carbon disulphide and trithiocarbonate, J. Sci. Food Agric. 28: 673.

    CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1978, Atmospheric sulfur compounds and microbes, Environ. Res. 15: 513.

    PubMed  CAS  Google Scholar 

  • Balandrin, M. F., Lee, S. M., and Klocke, J. A., 1988, Biologically active volatile organosulfur compounds from seeds of the neem tree, Azadirachta indica (Meliaceae), J. Agric. Food Chem. 36: 1048.

    CAS  Google Scholar 

  • Bandy, A. R., Maroulis, P. J., Shalaby, L., and Wilner, L. A., 1981, Evidence for a short trophospheric residence time for carbon disulfide, Geophys. Res. Lett. 8: 1180.

    CAS  Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1976, Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials, Soil Biol. Biochem. 8: 439.

    CAS  Google Scholar 

  • Barnard, W. R., Andreae, M. O., Watkins, W. E., Bingemer, H., and Georgii, H. W., 1982, The flux of dimethyl sulfide from the oceans to the atmosphere, J. Geophys. Res. 87: 8787.

    CAS  Google Scholar 

  • Barnard, W. R., Andreae, M. O., and Iverson, R. L., 1984, Dimethylsulfide and Phaeocystis poucheti in the south-eastern Bering Sea, Continental Shelf Res. 3: 103.

    Google Scholar 

  • Bates, T. S., Charlson, R. J., and Gammon, R. H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature (London) 329: 319.

    CAS  Google Scholar 

  • Bechard, M. J., and Rayburn, W. R., 1979, Volatile organic sulfides from freshwater algae, J. Phycol. 15: 379.

    CAS  Google Scholar 

  • Biedlingmaier, S., and Schmidt, A., 1983, Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca, Arch. Microbiol. 136: 124.

    CAS  Google Scholar 

  • Bills, D. D., and Keenan, T. W., 1968, Dimethyl sulfide and its precursor in sweetcorn, J. Agric. Food Chem. 16: 643.

    CAS  Google Scholar 

  • Bilous, P. T., and Weiner, J. H., 1985, Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101, J. Bacteriol. 162: 1151.

    PubMed  CAS  Google Scholar 

  • Blom, H. J., van den Elzen, J. P. A. M., Yap, S. H., and Tangerman, A., 1988, Methanethiol and dimethylsulfide formation from 3-methylthiopropionate in human and rat hepatocytes, Biochim. Biophys. Acta 972: 131.

    PubMed  CAS  Google Scholar 

  • Brassell, S. C., Lewis, C. A., de Leeuw, J. W., de Lange, L., and Sinninghe Damste, J. J., 1986, Isoprenoid thiophenes: Novel products of sediment diagenesis, Nature (London) 320: 160.

    CAS  Google Scholar 

  • Bremner, J. M., and Steele, C. G., 1978, Role of microorganisms in the atmospheric sulfur cycle, Adv. Microb. Ecol. 2: 155.

    CAS  Google Scholar 

  • Brown, K. A., and Bell, J. N. B., 1986, Vegetation—the missing sink in the global cycle of carbonyl sulphide, Atmos. Environ. 20: 537.

    CAS  Google Scholar 

  • Cantoni, G. L., and Anderson, D. G., 1956, Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa, J. Biol. Chem. 222: 171.

    PubMed  CAS  Google Scholar 

  • Challenger, F., 1959, Aspects of the Organic Chemistry of Sulphur, Butterworths, London.

    Google Scholar 

  • Challenger, F., and Simpson, M. I., 1948, Studies on biological methylation, Arch. Biochem. 69: 514.

    Google Scholar 

  • Chen, S., Zieve, L., and Mahadevan, V., 1970, Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine, J. Lab. Clin. Med. 75: 628.

    PubMed  CAS  Google Scholar 

  • Chengelis, C. P., and Neal, R. A., 1987, Oxidative metabolism of carbon disulfide by isolated rat liver hepatocytes and microsomes, Biochem. Pharmacol. 36: 363.

    PubMed  CAS  Google Scholar 

  • Cline, J. D., and Bates, T. S., 1983, Dimethylsulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett. 10: 949.

    CAS  Google Scholar 

  • Cocks, A., and Kallend, T., 1988, The chemistry of atmospheric pollution, Chem. Br. 24: 884.

    CAS  Google Scholar 

  • Conkle, J. P., Camp, B. J., and Welch, B. E., 1975, Trace composition of human respiratory gas, Arch. Environ. Health 30: 290.

    PubMed  CAS  Google Scholar 

  • Conway, E. J., 1942, Mean geochemical data in relation to oceanic evolution, Proc. R. Ir. Acad. Sect. A 48: 119.

    Google Scholar 

  • Cook, A. M., and Huetter, R., 1982, Ametyne and prometyne as sulfur sources for bacteria, Appl. Environ. Microbiol. 43: 781.

    PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., 1983, Biochemistry of sulfur-containing amino acids, Annu. Rev. Biochem. 52: 187.

    PubMed  CAS  Google Scholar 

  • Cox, R. A., and Sandalls, F. J., 1974, The photooxidation of hydrogen sulfide in air, Atmos. Environ. 8: 1269.

    PubMed  CAS  Google Scholar 

  • Cripps, R. E., 1971, Microbial Metabolism of Aromatic Compounds Containing Sulphur, Ph.D. thesis, University of Warwick, Coventry, United Kingdom.

    Google Scholar 

  • Cripps, R. E., 1973, The microbial metabolism of thiophen-2-carboxylate, Biochem. J. 134: 353.

    PubMed  CAS  Google Scholar 

  • Crump, D. R., 1980a, Thietanes and dithiolanes from the anal gland of the stoat, Mustela erminea, J. Chem. Ecol. 6: 759.

    Google Scholar 

  • Crump, D. R., 1980b, Anal gland secretion of the ferret (Mustela putorius forma furo), J. Chem. Ecol. 6: 837.

    CAS  Google Scholar 

  • Dacey, J. W. H., and Wakeham, S. G., 1986, Oceanic dimethylsulfide: Production during Zooplankton grazing on phytoplankton, Science 233: 1314.

    PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., King, G. M., and Wakeham, S. G., 1987, Factors controlling emission of dimethylsulphide from salt marshes, Nature (London) 330: 643.

    CAS  Google Scholar 

  • Dando, P. R., Southward, A. J., Southward, E. C., and Barrett, R. L., 1986, Possible energy sources for chemosynthetic prokaryotes symbiotic with invertebrates from Norwegian fjord, Ophelia 26: 135.

    Google Scholar 

  • De Bont, J. A. M., van Dijken, J. P., and Harder, W., 1981, Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S, J. Gen. Microbiol. 127: 315.

    Google Scholar 

  • Deprez, P. P., Franzmann, P. D., and Burton, H. R., 1986, Determination of reduced sulfur gases in Antarctic lakes and seawater by gas chromatography after solid absorbent preconcentration, J. Chromatogr. 362: 9.

    CAS  Google Scholar 

  • Dickson, D. M., Wyn Jones, R. G., and Davenport, J., 1980, Steady state osmotic adaptation in Ulva lactuca, Planta 150: 158.

    CAS  Google Scholar 

  • Dickson, D. M., Wyn Jones, R. G., and Davenport, J., 1982, Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes, Planta 155: 409.

    CAS  Google Scholar 

  • Drotar, A., Burton, G. A., Tavernier, J. E., and Fall, R., 1987a, Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases, Appl. Environ. Microbiol. 53: 1626.

    PubMed  CAS  Google Scholar 

  • Drotar, A., Fall, L. R., Mishalanie, E. A., Tavernier, J. E., and Fall, R., 1987b, Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila, Appl. Environ. Microbiol. 53: 2111.

    PubMed  CAS  Google Scholar 

  • Eisenberg, M. A., 1975, Biotin, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 27–56, Academic Press, New York.

    Google Scholar 

  • Elliott, S., Lu, E., and Sherwood-Rowland, F., 1989, Hydrogen sulfide in oxic seawater, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 314–326, American Chemical Society (Symposium Series 393), Washington, D.C.

    Google Scholar 

  • Ensley, B. D., 1975, Microbial metabolism of condensed thiophenes, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 309–317, Academic Press, New York.

    Google Scholar 

  • Ensley, B. D., 1984, Microbial metabolism of condensed thiophenes, in: Microbial Degradation of Organic Compounds (T. D. Gibson, ed.), pp. 309–317, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Eriksson, E., 1963, The yearly circulation of sulfur in nature, J. Geophys. Res. 68: 4001.

    Google Scholar 

  • Fedorak, P. M., Payzant, J. D., Montgomery, D. S., and Westlake, D. W. S., 1988, Microbial degradation of N-alkyl tetrahydrothiophenes found in petroleum, Appl. Environ. Microbiol. 54: 1243.

    PubMed  CAS  Google Scholar 

  • Feigel, B. J., and Knackmuss, H.-J., 1988, Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid, FEMS Microbiol. Leu. 55: 113.

    CAS  Google Scholar 

  • Ferchichi, M., Hemme, D., Nardi, M., and Pamboukian, N., 1985, Production of methanethiol from methionine by Brevibacterium linens CNRZ 918, J. Gen. Microbiol. 131: 715.

    PubMed  CAS  Google Scholar 

  • Ferchichi, M., Hemme, D., and Nardi, M., 1986, Induction of methanethiol production by Brevibacterium linens CNRZ 918, J. Gen. Microbiol. 132: 3075.

    CAS  Google Scholar 

  • Ferek, R. J., and Andreae, M. O., 1983, The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean, Geophys. Res. Lett. 10: 393.

    CAS  Google Scholar 

  • Ferek, R. J., and Andreae, M. O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature (London) 307: 148.

    CAS  Google Scholar 

  • Ferek, R. J., Chatfield, R. B., and Andreae, M. O., 1986, Vertical distribution of dimethyl sulphide in the marine atmosphere, Nature (London) 320: 514.

    CAS  Google Scholar 

  • Fletcher, I., 1989, North Sea DMS emissions as a source of background sulfate over Scandinavia: a model, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 489–501, American Chemical Society (Symposium Series 393), Washington, D.C.

    Google Scholar 

  • Franzmann, P. D., Deprez, P. P., Burton, H. R., and van den Hoff, J., 1987, Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide, Aust. J. Freshwater Res. 38: 409.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Ferguson, R. L., 1986, Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: Agreement between chemical and microbiological measurements, Mar. Ecol. Prog. Ser. 33: 237.

    CAS  Google Scholar 

  • Gianturco, M. A., Giammarino, A. S., and Friedel, P., 1968, Volatile constituents of coffee V, Nature (London) 210: 1358.

    Google Scholar 

  • Graedel, T. E., Kammlott, G. W., and Franey, J. P., 1981, Carbonyl sulfide: Potential agent of atmospheric sulfur corrosion, Science 212: 663.

    PubMed  CAS  Google Scholar 

  • Grosjean, D., and Lewis, R., 1982, Atmospheric photooxidation of methyl sulfide, Geophys. Res. Lett. 9: 1203.

    CAS  Google Scholar 

  • Guenther, A., Lamb, B., and Westberg, H., 1989, U.S. National biogenic sulfur emissions inventory, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 14–30, American Chemical Society, (Symposium Series 393), Washington, D.C.

    Google Scholar 

  • Haas, P., 1935, CLVII, The liberation of methyl sulfide by seaweed, Biochem. J. 29: 1297.

    PubMed  CAS  Google Scholar 

  • Haines, B., Black, M., and Bayer, C., 1989, Sulfur emissions from roots of the rain forest tree Stryphnodendron excelsum, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 58–69, American Chemical Society (Symposium Series 393), Washington, D.C.

    Google Scholar 

  • Hall, M. R., and Berk, R. S., 1968, Microbial growth on mercaptosuccinic acid, Can. J. Microbiol. 14: 515.

    CAS  Google Scholar 

  • Harvey, G. R., and Lang, R. F., 1986, Dimethylsulfoxide and dimethylsulfone in the marine atmosphere, Geophys. Res. Lett. 13: 49.

    CAS  Google Scholar 

  • Harwood, J. J., and Nicholls, R. G., 1979, The plant sulpholipid—a major component of the sulphur cycle, Biochem. Soc. Trans. 7: 440.

    PubMed  CAS  Google Scholar 

  • Hatakeyama, S., Okuda, M., and Akimoto, H., 1982, Formation of sulfur dioxide and methanesulfonic acid in the photooxidation of dimethyl sulfide in the air, Geophys. Res. Lett. 9: 583.

    CAS  Google Scholar 

  • Hatakeyama, S., Izumi, K., and Akimoto, H., 1985, Yield of SO2 and formation of aerosol in the photooxidation of DMS under atmospheric conditions, Atmos. Environ. 19: 135.

    CAS  Google Scholar 

  • Hattula, T., and Granroth, B., 1974, Formation of dimethyl sulfide from S-methylmethionine in onion seedlings (Allium cepa), J. Sci. Food Agric. 25: 1517.

    PubMed  CAS  Google Scholar 

  • Headley, J. V., 1987, GC/MS identification of organosulfur compounds in environmental samples, Biomed. Environ. Mass Spectrom. 14: 275.

    PubMed  CAS  Google Scholar 

  • Hitchcock, D. R., 1975, Dimethyl sulfide emissions to the global atmosphere, Chemosphere No. 3, pp. 137–138, Pergamon Press, New York.

    Google Scholar 

  • Hitchcock, D. R., 1976, Atmospheric sulfates from biological sources, J. Air Pollut. Control Assoc. 26: 210.

    PubMed  CAS  Google Scholar 

  • Hoeven, J. C. M. van der, Mak, J. K., Flohr, P. M., and Knippenberg, J. A. J. van, 1986, Review of Literature on Carbon Disulfide, Bericht der NOTOX,’ s-Hertogenbosch, und D.H.V., Raumplanung und Umwelt, Bereich Umweltschutz.

    Google Scholar 

  • Howes, B. L., Dacey, J. W. H., and Wakeham, S. G., 1985, Effects of sampling technique on measurements of pore water constituents in salt marsh sediments, Limnol. Oceanogr. 30: 221.

    CAS  Google Scholar 

  • Ishikawa, M., Shibuya, K., Tokita, F., and Koshimizu, M., 1984, A study of bad breath. (2) The evaluation of bad breath by methyl mercaptan production from methionine, Koku Eisei Gakkai Zasshi 34: 124.

    CAS  Google Scholar 

  • Johnson, R. E., 1983, Chemical signals and reproductive behavior, in: Pheromones and Reproduction in Mammals (J. G. Vandenbergh, ed.), pp. 3–37, Academic Press, New York.

    Google Scholar 

  • Jørgensen, B. B., and Okholm-Hansen, B., 1986, Emissions of biogenic sulfur gases from a Danish estuary, Atmos. Environ. 19: 1737.

    Google Scholar 

  • Junge, C. E., 1960, Sulfur in the atmosphere, J. Geophys. Res. 65: 227.

    CAS  Google Scholar 

  • Kadota, H., and Ishida, Y., 1972, Production of volatile sulfur compounds by microorganisms, Annu. Rev. Microbiol. 26: 127.

    PubMed  CAS  Google Scholar 

  • Kaizu, T., 1976a, Source of foul breath and its control, Nippon Shika Ishikai Zasshi 29: 228.

    PubMed  CAS  Google Scholar 

  • Kaizu, T., 1976b, Analysis of volatile sulfur compounds in exhaled air by gas chromatography, Nippon Shishubyo Gakkai Kaishi 18: 1.

    PubMed  CAS  Google Scholar 

  • Kaizu, T., Tsunoda, M., Aoki, H., and Kimura, K., 1978, Analysis of volatile sulfur compounds in mouth air by gas chromatography, Bull. Tokyo Dent. Coll. 19: 43.

    PubMed  CAS  Google Scholar 

  • Kaji, H., Hisamura, M., Saito, N., and Murao, M., 1978, Evaluation of volatile sulfur compounds in the expired alveolar gas in patients with liver cirrhosis, Clin. Chim. Acta 85: 279.

    PubMed  CAS  Google Scholar 

  • Kanagawa, T., and Kelly, D. P., 1986, Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus, FEMS Microbiol. Lett. 34: 13.

    CAS  Google Scholar 

  • Kanagawa, T., and Kelly, D. P., 1987, Degradation of substituted thiophenes by bacteria isolated from activated sludge, Microb. Ecol. 13: 47.

    CAS  Google Scholar 

  • Kanagawa, T., Dazai, M., and Takahara, Y., 1980, Degradation of O,O-dimethyl phosphorodithioate by activated sludge, Agric. Biol. Chem. 44: 2631.

    CAS  Google Scholar 

  • Kanagawa, T., Dazai, M., and Fukuoka, S., 1982, Degradation of O,O-dimethyl phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2, Agric. Biol. Chem. 46: 2571.

    CAS  Google Scholar 

  • Kargi, F., 1987, Biological oxidation of thianthrene, thioxanthene and dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius, Biotechnol. Lett. 9: 478.

    CAS  Google Scholar 

  • Kargi, F., and Robinson, J. M., 1984, Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius, Biotechnol. Bioeng. 26: 687.

    PubMed  CAS  Google Scholar 

  • Katalyse, 1987, BUND, Oko-Institut, ULF: Chemie am Arbeitsplatz. Gefahrliche Arbeitsstoffe, Berufskrankheiten und Auswege, Rowohlt, Reinbeck.

    Google Scholar 

  • Keenan, T. W., and Lindsay, R. C., 1968, Evidence for a dimethyl sulfide precursor in milk, J. Dairy Sci. 51: 112.

    CAS  Google Scholar 

  • Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989, Dimethyl sulfide production in marine phytoplankton, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 167–182, American Chemical Society (Symposium Series 393), Washington, D.C.

    Google Scholar 

  • Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175: 587.

    PubMed  CAS  Google Scholar 

  • Kelly, D. P., 1980, The sulphur cycle: Definitions, mechanisms and dynamics, in: Sulphur in Biology, Ciba Foundation Symposium 72 (new series), pp. 3–18, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Kelly, D. P., 1982, Biochemistry of the chemolithotropic oxidation of inorganic sulphur, Phil. Trans. R. Soc. London Sect. B 298: 499.

    CAS  Google Scholar 

  • Kelly, D. P., 1988, Oxidation of sulphur compounds, Soc. Gen. Microbiol. Symp. 42: 65.

    Google Scholar 

  • Khalil, M. A., and Rasmussen, R. A., 1984, Global sources, lifetimes and mass balances of carbonyl sulfide (COS) and carbon disulfide in the earth’s atmosphere, Atmos. Environ. 18: 1805.

    CAS  Google Scholar 

  • Kieber, D. J., and Mopper, K., 1983, Reversed phase high performance liquid chromatographic analysis of alpha-keto acid quinoxalinole derivatives: Optimization of technique and application to natural samples, J. Chromatogr. 281: 135.

    CAS  Google Scholar 

  • Kiene, R. P., 1988, Dimethylsulfide metabolism in salt marsh sediments, FEMS Microbiol. Ecol. 53: 71.

    CAS  Google Scholar 

  • Kiene, R. P., and Capone, D. G., 1988, Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments, Microb. Ecol. 15: 275.

    CAS  Google Scholar 

  • Kiene, R. P., and Taylor, B. F., 1988a, Biotransformations of organosulfur compounds in sediments via 3-mercaptopropionate, Nature (London) 332: 148.

    CAS  Google Scholar 

  • Kiene, R. P., and Taylor, B. F., 1988b, Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments, Appl. Environ. Microbiol. 54: 2208.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P., and Visscher, P. T., 1987, Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments, Appl. Environ. Microbiol. 53: 2426.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P., Oremland, R. S., Catena, A., Miller, L. G., and Capone, D. G., 1986, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen, Appl. Environ. Microbiol. 52: 1037.

    PubMed  CAS  Google Scholar 

  • Kim, K.-H., and Andreae, M. O., 1987, Determination of carbon disulfide in natural waters by adsorbent preconcentration and gas chromatography with flame photometric detection, Anal. Chem. 59: 2670.

    CAS  Google Scholar 

  • King, G. F., Richardson, D. J., Jackson, J. B., and Ferguson, S. J., 1987, Dimethylsulphoxide and trimethylamine-N-oxide as bacterial electron transport acceptors: Use of nuclear magnetic resonance to assay and characterise the reductase system in Rhodobacter capsulatus, Arch. Microbiol. 149: 47.

    CAS  Google Scholar 

  • Kjaer, A., 1977, Low molecular weight sulphur-containing compounds in nature: A survey, Pure Appl. Chem. 49: 137.

    CAS  Google Scholar 

  • Klockow, D., Bayer, W., and Faigle, W., 1978, Gas chromatographic determination of traces of low molecular weight carboxylic and sulfonic acids in aqueous solutions, Fresenius Z. Anal. Chem. 292: 385.

    CAS  Google Scholar 

  • Koehler, M., Genz, I., Babenzien, H.-D., Eckardt, V., Hieke, W., 1978, Mikrobielle Abbau organischer Schwefelverbindungen, Z. Allg. Mikrobiol. 18: 67.

    CAS  Google Scholar 

  • Koehler, M., Genz, I.-L., Schicht, B., and Eckart, V., 1984, Mikrobielle Entschwefelung von Erdoel und schweren Erdoelfraktionen, Zbl. Bakterial. 139: 239.

    CAS  Google Scholar 

  • Koenig, W. A., Ludwig, K., Sievers, S., Rinken, M., Storting, K. H., and Guenther, W., 1980, Identification of volatile organic sulfur compounds in municipal sewage systems by GC/MS, J. High Res. Chromatogr. Chromatogr. Commun. 3: 415.

    CAS  Google Scholar 

  • Krauss, F., and Schmidt, A., 1987, Sulphur sources for growth of Chlorella fusca and their influence on key enzmymes of sulphur metabolism, J. Gen. Microbiol. 133: 1209.

    CAS  Google Scholar 

  • Krouse, H. R., and McCready, R. G. L., 1979, Biogeochemical cycling of sulfur, in: Biogeochemical Cycling of the Mineral-Forming Elements (P. A. Trudinger, ed.), pp. 401–430, Elsevier, Amsterdam.

    Google Scholar 

  • Laborde, A. L., and Gibson, D. T., 1977, Metabolism of dibenzothiophene by a Beijerinckia species, Appl. Environ. Microbiol. 34: 783.

    PubMed  CAS  Google Scholar 

  • Laing, W. A., and Christeller, J. T., 1980, A steady-state kinetic study on the catalytic mechanism of ribulose bisphosphate carboxylase from soybean, Arch. Biochem. Biophys. 202: 592.

    PubMed  CAS  Google Scholar 

  • Larher, F., Hamelin, J., and Stewart, G. R., 1977, L’acide dimethyl sulfonium-3-propanoique de Spartina anglica, Phytochemistry 18: 1396.

    Google Scholar 

  • Lashen, E. S., and Starkey, R. L., 1970, Decomposition of thiourea by a Penicillium species and soil and sewage-sludge microflora, J. Gen. Microbiol. 64: 139.

    CAS  Google Scholar 

  • Lay, M. D. S., Sauerhoff, M. W., and Saunders, D. R., 1986, Carbon Disulfide, in: Ullmann’s Encyclopaedia of Industrial Chemistry, 5th ed., Vol. A 5, pp. 185–195, Verlag Chemie, Weinheim.

    Google Scholar 

  • Leder, I. G., 1975, Thiamine, biosynthesis and function, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 57–73, Academic Press, New York.

    Google Scholar 

  • Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface, Nature (London) 247: 181.

    CAS  Google Scholar 

  • Ljunggren, G., and Norberg, B. O., 1943, On the effect of toxicity of dimethyl sulfide, dimethyl disulfide and methyl mercaptan, Acta Physiol. Scand. 5: 248.

    CAS  Google Scholar 

  • Lorimer, G. H., and Pierce, J., 1990, Carbonyl sulfide: An alternative substrate for but not an activator of ribulose-1,5-bisphosphate carboxylase, Biochemistry [cited as in press by Ogawa and Togasaki (1988)].

    Google Scholar 

  • Lovelock, J. E., 1974, CS2 and the natural sulphur cycle, Nature (London) 248: 625.

    CAS  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature (London) 237: 452.

    CAS  Google Scholar 

  • Manolis, A., 1983, The diagnostic potential of breath analysis, Clin. Chem. 29: 5.

    PubMed  CAS  Google Scholar 

  • Maroulis, P. J., and Bandy, A. R., 1976, Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle, Science 196: 247.

    Google Scholar 

  • Maw, G. A., 1981, The biochemistry of sulphonium salts, in: The Chemistry of the Sulphonium Compounds C. J. M. Stirling, ed.), Part 2, pp. 703–771, Wiley, New York.

    Google Scholar 

  • McEwan, A. G., Ferguson, S. J., and Jackson, J. B., 1983, Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata, Arch. Microbiol. 136: 300.

    PubMed  CAS  Google Scholar 

  • Monticello, D. J., and Finnerty, W. R., 1985, Microbial desulfurization of fossil fuels, Annu. Rev. Microbiol. 39: 371.

    PubMed  CAS  Google Scholar 

  • Monticello, D. J., Bakker, D., and Finnerty, W. R., 1985, Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species, Appl. Environ. Microbiol. 49: 756.

    PubMed  CAS  Google Scholar 

  • Mormile, M. R., and Atlas, R. M., 1988, Mineralization of the dibenzothiophene biodegradation products 3-hydroxy-2-formyl benzothiophene and dibenzothiophene sulfone, Appl. Environ. Microbiol. 54: 3183.

    PubMed  CAS  Google Scholar 

  • Moubasher, A. H., Elnaghy, M. A., and Abdel-Hafez, S. I., 1974, Effect of fumigation of three grains with formalin and carbon disulfide on the grain-borne fungi, Bull. Fac. Sci. Assiut Univ. 3: 13.

    Google Scholar 

  • Munnecke, D. E., Domsch, J. H., and Eckert, J. W., 1962, Fungicidal activity of air passed through columns of soil treated with fungicides, Phytopathology 52: 1298.

    CAS  Google Scholar 

  • Nguyen, B. C., Gaudry, A., Bonsang, B., and Lambert, G., 1978, Reevaluation of the role of dimethyl sulphide in the sulphur budget, Nature (London) 275: 637.

    Google Scholar 

  • Nriagu, J. O., Holdway, D. A., and Coker, R. D., 1987, Biogenic sulfur and the acidity of rainfall in remote areas of Canada, Science 237: 1189.

    PubMed  CAS  Google Scholar 

  • Ogawa, T., and Togasaki, R. K., 1988, Carbonyl sulfide: An inhibitor of inorganic carbon transport in cyanobacteria, Plant Physiol. 88: 800.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., and Zehr, J. P., 1986, Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium, Appl. Environ. Microbiol. 52: 1031.

    PubMed  CAS  Google Scholar 

  • Panter, R., and Penzhorn, R. D., 1980, Alkyl sulfonic acids in the atmosphere, Atmos. Environ. 14: 149.

    CAS  Google Scholar 

  • Pearce, F., 1988, Phytoplankton shares the blame for sulphur pollution, New Sci. 11 Feb. 1988, p. 25.

    Google Scholar 

  • Plennart, W., and Heine, W., 1973, Normalwerte, 4. Aufl., VEB Verlag, Berlin.

    Google Scholar 

  • Postgate, J. R., and Kelly, D. P., 1982, Sulphur Bacteria, The Royal Society, London.

    Google Scholar 

  • Rajagopal, B. S., and Daniels, L., 1986, Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria, Curr. Microbiol. 14: 137.

    CAS  Google Scholar 

  • Rasmussen, R. A., 1974, Emission of biogenic hydrogen sulfide, Tellus 26: 254.

    CAS  Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982a, The oceanic source of carbonyl sulfide (OCS), Atmos. Environ. 16: 1591.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., Dalluge, R. W., Penkett, S. A., and Jones, B., 1982b, Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens, Science 215: 665.

    PubMed  CAS  Google Scholar 

  • Reed, R. H., 1983, Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine macroalgae, Mar. Biol. Lett. 34: 173.

    Google Scholar 

  • Robinson, E., and Robbins, R. C., 1970, Gaseous sulfur pollutants from urban and natural sources, J. Air Pollut. Control Assoc. 20: 233.

    CAS  Google Scholar 

  • Rodgers, G. A., Ashworth, J., and Walker, N., 1980, Recovery of nitrifier populations from inhibition by nitrapyrin or CS2, Zbl. Bakteriol. II Abt. 135: 477.

    CAS  Google Scholar 

  • Rohde, H., and Isaksen, I., 1980, Global distribution of sulfur compounds in the trophosphere estimated in a height/latitude transport model, J. Geophys. Res. 85: 7401.

    Google Scholar 

  • Rosenberg, M., 1989, Microbial films in the mouth: Some ecologically relevant observations, in: Microbial Mats: Ecological Physiology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 245–250, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Rosenberg, M., and Gabbay, J., 1987, Halitosis—a call for affirmative action, Dent. Med. 5: 13.

    CAS  Google Scholar 

  • Saigne, C., and Legrand, M., 1987, Measurements of methanesulphonic acid in Antarctic ice, Nature (London) 330: 240.

    CAS  Google Scholar 

  • Salsbury, R. L., and Merricks, D. L., 1975, Production of methane thiol and dimethyl sulfide by rumen microorganisms, Plant Soil 43: 191.

    CAS  Google Scholar 

  • Sandalls, F. J., and Penkett, S. A., 1977, Measurements of carbonyl sulfide and carbon disulfide in the atmosphere, Atmos. Environ. 11: 197.

    CAS  Google Scholar 

  • Schmidt, N. R, Missan, S. R., Tarbet, W. J., and Cooper, A. D., 1978, The correlation between organoleptic mouth odor ratings and levels of volatile sulfur compounds, Oral Surg. Oral Med. Oral Pathol. 45: 560.

    PubMed  CAS  Google Scholar 

  • Schreiner, R. P., Stevens, S. E., and Tien, M., 1988, Oxidation of thianthrene by the ligninase of Phanerochaete chrysosporium, Appl. Environ. Microbiol. 54: 1858.

    PubMed  CAS  Google Scholar 

  • Schultz, T. H., McKenna Kruse, S. M., and Flath, R. A., 1985, Some volatile constituents of female dog urine, J. Chem. Ecol. 11: 169.

    CAS  Google Scholar 

  • Scranton, M. I., and Brewer, P. G., 1977, Occurrence of methane in the near-surface waters of the western subtropical North Atlantic, Deep Sea Res. 24: 127.

    CAS  Google Scholar 

  • Selyuzhiyskii, G. B., 1972, Experimental data used to determine the maximum permissible concentration of methyl mercaptan, dimethyl sulphide and dimethyl disulphide in the air of the production area of paper and pulp plants, Gig. Tr. Prof. Zabol. 16: 46.

    Google Scholar 

  • Shibuya, I., Yagi, T., and Benson, A. A., 1963, Sulfonic acids in algae, in: Microalgae and Photosynthetic Bacteria, pp. 627–636, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Singer, A. G., Agosta, W. C., O’Connell, R. J., Pfaffmann, C., Bowen, D. V., and Field, F. H., 1976, Dimethyl disulphide; an attractant pheromone in hamster vaginal secretion, Science 191: 948.

    PubMed  CAS  Google Scholar 

  • Sivelä, S., 1980, Dimethyl sulphide as a growth substrate for an obligately chemolithotrophic Thiobacillus, in: Commentationes Physico-Mathematicae, Dissert. No. 1 (L. Simons, ed.), pp. 1–69, Societas Scientareum Fennica, Helsinki.

    Google Scholar 

  • Sivelä, S., and Sundman, V., 1975, Demonstration of Thiobacillus-type bacteria, which utilize methyl sulphides, Arch. Microbiol. 103: 303.

    Google Scholar 

  • Smith, N. A., and Kelly, D. P., 1988a, Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy, J. Gen. Microbiol. 134: 1407.

    CAS  Google Scholar 

  • Smith, N. A., and Kelly, D. P., 1988b, Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6, J. Gen. Microbiol. 134: 3031.

    CAS  Google Scholar 

  • Smith, N. A., and Kelly, D. P., 1988c, Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m, J. Gen. Microbiol. 134: 3041.

    CAS  Google Scholar 

  • Soeder, C. J., Hegewald, E., and Kneifel, H., 1987, Green algae can use naphthalenesulfonic acids as sources of sulfur, Arch. Microbiol. 148: 260.

    CAS  Google Scholar 

  • Sorensen, N. A., 1961, Structural patterns of polyacetylenic compounds from the plant family Compositae, Pure Appl. Chem. 2: 569.

    CAS  Google Scholar 

  • Sparnins, V. L., Baraby, G. and Wattenberg, L. W., 1988, Effect of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse, Carcinogenesis 9: 131.

    PubMed  CAS  Google Scholar 

  • Stapley, E. O., and Starkey, R. L., 1970, Decomposition of cysteic acid and taurine by soil microorganisms, J. Gen. Microbiol. 64: 77.

    CAS  Google Scholar 

  • Steudler, P. A., and Peterson, B. I., 1984, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature (London) 311: 455.

    CAS  Google Scholar 

  • Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., and Rose, W. I., 1971, Organic compounds in volcanic gas from Santiaguito volcano, Guatemala, Bull. Geol. Soc. Am. 82: 2299.

    CAS  Google Scholar 

  • Stoll, M., Winter, M., Gaukschi, F., Flament, I., and Willhalm, B., 1967, Recherches sur les aromes. Sur l’arome de café I, Helv. Chim. Acta 50: 628.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., and Schenk, S., 1976, Volatile organic compounds and microorganisms, Crit. Rev. Microbiol. 4: 353.

    Google Scholar 

  • Suylen, G. M. H., 1988, Microbial metabolism of dimethyl sulphide and related compounds, Proefschrift, Technical University of Delft, Delft, The Netherlands.

    Google Scholar 

  • Suylen, G. M. H., and Kuenen, J. G., 1986, Chemostat enrichment and isolation of Hyphomicrobium EG, Antonie von Leeuwenhoek J. Microbiol. Serol. 52: 281.

    CAS  Google Scholar 

  • Suylen, G. M. H., Stefess, G. C., and Kuenen, J. G., 1986, Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds, Arch. Microbiol. 146; 192.

    CAS  Google Scholar 

  • Suylen, G. M. H., Large, P. J., van Dijken, J. P., and Kuenen, J. G., 1987, Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG, J. Gen. Microbiol. 133: 2989.

    CAS  Google Scholar 

  • Sweetnam, P. M., Taylor, S. W., and Elwood, P. C., 1987, Exposure to carbon disulphide and ischaemic heart disease in a viscose rayon factory, Br. J. Ind. Med. 44: 220.

    PubMed  CAS  Google Scholar 

  • Tazuya, K., Yamada, K., Nakamura, K., and Kumaoka, H., 1987, The origin of the sulfur atom of thiamin, Biochim. Biophys. Acta 924: 210.

    PubMed  CAS  Google Scholar 

  • Thomel, F., 1987, Synthesen mit Schwefelkohlenstoff, Chem. Z. 111: 285.

    Google Scholar 

  • Thompson, C. J., Coleman, H. J., Hopkins, R. L., and Rall, H. T., 1965, Hydrocarbon analysis, p. 329, ASTM STP 389, American Society for Testing and Materials.

    Google Scholar 

  • Timmerman, R. W., 1978, Carbon disulfide, in: Encyclopaedia of Chemical Technology (R. E. Kirk and D. F. Othmer, eds.), pp. 742–757, Wiley, New York.

    Google Scholar 

  • Tocher, C. S., and Ackman, R. G., 1966, The identification of dimethyl-β-propiothetin in the algae Syracosphaera carterae and Viva carterae in relation to sulfur source and salinity variations, Limnol. Oceanogr. 30: 59.

    Google Scholar 

  • Tocher, C. S., Ackman, R. G., and McLachlan, J., 1966, The identification of dimethyl-β-propiothetin in the algae Syracosphaera carterae and Ulva lactuca, Can. J. Biochem. 44: 519.

    PubMed  CAS  Google Scholar 

  • Tomita, B., Inoue, H., Chaya, K., Nakamura, A., Hamamura, N., Ueno, K., Watanabe, K., and Ose, Y., 1987, Identification of dimethyl disulfide-forming bacteria isolated from activated sludge, Appl. Environ. Microbiol. 53: 1541.

    PubMed  CAS  Google Scholar 

  • Tonzetich, J., 1977, Production and origin of oral malodor: A review of mechanisms and methods of analysis, J. Periodontol. 48: 13.

    PubMed  CAS  Google Scholar 

  • Tonzetich, J., 1978, Oral malodor: An indicator of health status, Int. Dent. J. 28: 309.

    PubMed  CAS  Google Scholar 

  • Toon, O. B., Kasting, J. F., Turco, R. P., and Liu, M. S., 1987, The sulfur cycle in the marine atmosphere, J. Geophys. Res. D 92: 943.

    CAS  Google Scholar 

  • Tucker, B. J., Maroulis, P. J., and Bandy, A. R., 1985, Free trophospheric measurements of carbon disulfide over a 45°N to 45°S latitude range, Geophys. Res. Lett. 12: 9.

    CAS  Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P., 1980, Stratospheric aerosols and climate, Nature (London) 283: 283.

    CAS  Google Scholar 

  • Turner, S. M., and Liss, P. S., 1987, Dimethyl sulphide and dimethyl sulphoniopropionate studies in European coastal waters, American Chemical Society, Division of Environmental Chemistry, 194th National Meeting (New Orleans), Vol. 27, no. 2, pp. 1–4.

    Google Scholar 

  • Vairavamurthy, A., and Mopper, K., 1987, Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter, Nature (London) 329: 623.

    CAS  Google Scholar 

  • Vairavamurthy, A., Andreae, M. O., Iversen, R. L., 1985, Biosynthesis of dimethyl sulfide and dimethyl propiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations, Limnol. Oceanog. 30: 59.

    CAS  Google Scholar 

  • Volkov, I.I., and Rozanov, A. G., 1983, The sulphur cycle in oceans. I. Reservoirs and fluxes, in: The Global Biogeochemical Sulphur Cycle (M. V. Ivanov and J. R. Freney, eds.), pp. 353–448, Wiley, Chichester.

    Google Scholar 

  • von Damm, K. L. 1983, Chemistry of Submarine Hydrothermal Solutions at 21° North, East Pacific Rise and Guayamas Basin, Gulf of California, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass.

    Google Scholar 

  • Wagner, C., and Stadtman, E. R. 1962, Bacterial fermentation of dimethyl-β-propiothetin, Arch. Biochem. Biophys. 98: 331.

    PubMed  CAS  Google Scholar 

  • Wakeham, S. G., Howes, B. L., Dacey, J. W. H., Schwarzenbach, R. P., and Zeyer, J., 1984, Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond, Geochim. Cosmochim, Acta 51: 1675.

    Google Scholar 

  • Weisiger, R. A., Pinkus, L. M., and Jakoby, W. B., 1980, Thiol S-methyltransferase: Suggested role in detoxication of intestinal hydrogen sulfide, Biochem. Pharmacol. 29: 2885.

    PubMed  CAS  Google Scholar 

  • Wells, J., and Koves, E., 1974, Detection of carbon disulphide (a disulfiram metabolite) in expired air by gas chromatography, J. Chromatogr. 92: 442.

    PubMed  CAS  Google Scholar 

  • Wheeler, J. W., von Endt, D. W., and Wenmer, C., 1975, 5-thiomethylpentane-2,3-dione. A unique natural compound from the striped hyaena, J. Amer. Chem. Soc. 97: 441.

    CAS  Google Scholar 

  • White, G. F., Dodgson, K. S., Davies, I., Matts, P. J., Shapleigh, J. P., and Payne, W. J., 1987, Bacterial utilisation of short-chain primary alkyl sulphate esters, FEMS Microbiol. Lett. 4: 173.

    Google Scholar 

  • White, R. H., 1982, Analysis of dimethyl sulfonium compounds in marine algae, J. Marine Res. 40: 529.

    CAS  Google Scholar 

  • Whitfield, F. B., Shea, S. R., Gillen, K. J., and Shaw, K. J., 1981, Volatile components from the roots of Acacia pulchella R. Br. and their effect on Phytophthora cinnamomi Rands. Aust J. Bot. 29: 195.

    CAS  Google Scholar 

  • Windholz, M. (ed.), The Merck Index, 10th ed., Merck & Co., Inc., Rahway, N.J.

    Google Scholar 

  • Winer, A. M., Atkinson, R., and Pitts, J. N., 1984, Gaseous nitrate radical: Possible nighttime atmospheric sink for biogenic organic compounds, Science 224: 156.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., Marty, D. G., Bianchi, A. J. M., and Ward, D. M., 1981, Vertical distribution of sulphate reduction, methane production and bacteria in marine sediments, Geomicrobiol. J. 2: 341.

    CAS  Google Scholar 

  • Yen, H. C., and Marrs, B., 1977, Growth of Rhodopseudomonas capsulatus under anaerobic dark conditions with dimethyl sulfoxide, Arch. Biochem. Biophys. 181: 411.

    PubMed  CAS  Google Scholar 

  • Young, L., and Maw, G. A., 1974, The Metabolism of Sulphur Compounds, Methuen, London.

    Google Scholar 

  • Zeyer, J., Eicher, P., Wakeham, S. G., and Schwarzenbach, R. P., 1987, Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria, Appl. Environ. Microbiol. 53: 2026.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and Brock, T. D., 1978a, Dimethyl sulfoxide as an electron acceptor for anaerobic growth, Arch. Microbiol. 116: 35.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and Brock, T. D., 1978b, Dimethyl sulfoxide reduction by microorganisms, J. Gen. Microbiol. 105: 335.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., Doemel, W. N., and Brock, T. D., 1977, Production of volatile sulfur compounds during the decomposition of algal mats, Appl. Environ. Microbiol. 34: 859.

    PubMed  CAS  Google Scholar 

  • Zuerrer, D., Cook, A. M., and Leisinger, T., 1987, Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids, Appl. Environ. Microbiol. 53: 1459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, D.P., Smith, N.A. (1990). Organic Sulfur Compounds in the Environment Biogeochemistry, Microbiology, and Ecological Aspects. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics