Skip to main content

Tryptophan Metabolism Along the Kynurenine Pathway in Rats

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Abstract

Enzyme activities along the kynurenine pathway, liver tryptophan 2,3-dioxygenase, small intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase, involved in the catabolism of tryptophan, were studied in male adult Wistar albino rats. Intestine superoxide dismutase and serum tryptophan were also determined. Hepatic tryptophan 2,3-dioxygenase is present both as holoenzyme and apoenzyme, but the total activity is inferior to that of intestine indole 2,3-dioxygenase which, therefore, actively oxidizes tryptophan in rats. However, this activity is inhibited by scavengers for the superoxide anion, such as superoxide dismutase, which also shows to be active in small intestine of rat. However, the more active enzymes appeared to be kynurenine 3-monooxygenase and 3-hydroxyanthranilate 3,4-dioxygenase. The former is equally active in both liver and kidney, the latter is more active in liver. Kynurenine-oxoglutarate transaminase is much more active in kidney than in liver, and much more active than kynureninase, which shows similar activities in both tissues.

In contrast to the high activity of 3-hydroxyanthranilate 3,4-dioxygenase, aminocarboxymuconate-semialdehyde decarboxylase is 30-35 times less active, showing the efficiency of conversion of tryptophan to NAD. These data demonstrate that rat is a useful animal model for studying tryptophan metabolism along the kynurenine pathway.

Serum tryptophan appeared to be 90% bound to proteins. Results demonstrate that, in rat, tryptophan is mainly metabolised along the kynurenine pathway. Therefore, rat is a suitable animal model for studying tryptophan metabolism in the pathological field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Musajo and C.A. Benassi, Aspects of disorders of the kynurenine pathway of tryptophan metabolism in manAdv. Clin. Chem. 763–135 (1964).

    Article  PubMed  CAS  Google Scholar 

  2. J.M. Price, R.R Brown, N. Yess, Testing the functional capacity of the tryptophan-niacin pathway in man by analysis of urinary metabolitesAdv. Metab. Disorders 2159–225 (1965).

    CAS  Google Scholar 

  3. H. Wolf, Studies on tryptophan metabolism in manScand. J. Clin. Lab. Invest.Suppl. No1361–186 (1974).

    PubMed  CAS  Google Scholar 

  4. J.C. Peters, Tryptophan nutrition and metabolism: an overview, in:Kynurenine and Serotonin Pathwaysedited by R. Schwarcz et al. (Plenum Press, New York, 1991), pp. 345–358.

    Chapter  Google Scholar 

  5. D.A. Bender and G.M. McCreanor, The preferred route of kynurenine metabolism in therat Biochim. Biophys. Acta717, 56–60 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. R. Schwarcz, F. Du, W. Schmidt, W.A. Turski, J.B. Gramsbergen, E. Okuno, R.C. Roberts, Kynurenic acid: a potential pathogen in brain disordersAnn. N.Y. Acad. Sci. 648140–153 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. R. Schwarcz, Metabolism and function of brain kynureninesBiochem. Soc. Trans. 2177–82 (1993).

    PubMed  CAS  Google Scholar 

  8. F. Moroni, P. Russi, M.A. Gallo-Mezo, G. Moneti, R. Pellicciari, Modulation of quinolinic and kynurenic acid content in the rat brain: effects of endotoxine and nicotinylalanineJ. Neurochem. 571630–1635 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. M.P. Heyes, K. Saito, D. Jacobowitz, S.P. Markey, O. Takikawa, J.H. Vickers, Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brainFASEB J. 62977–2989 (1992).

    PubMed  CAS  Google Scholar 

  10. K. Saito, J.S. Crowley, S.P. Markey, M.P. Heyes, A mechanism for increased quinolinic acid formation following acute systemic immune stimulationJ. Biol. Chem. 25815496–15503 (1993).

    Google Scholar 

  11. M.P. Heyes, K. Saito, J.S. Crowley, L.E. Davis, M.A. Demitrack et al, Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological diseaseBrain 1151249–1273 (1992).

    Article  PubMed  Google Scholar 

  12. W.E. Knox and A.H. Mehler, The conversion of tryptophan to kynurenine in liver I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenineJ. Biol. Chem. 187419–438 (1950).

    PubMed  CAS  Google Scholar 

  13. A.H. Mehler and W.E. Knox, The conversion of tryptophan to kynurenine in the liver.11. The enzymatic hydrolysis of formylkynurenineJ. Biol. Chem. 187431–438 (1950).

    PubMed  CAS  Google Scholar 

  14. C.E. Dalgliesh and H. Tabechian, Comparison of the metabolism of uniformily14C-labelled Lphenylalanine, L-tyrosin and L-tryptophan in therat Biochem. J. 62625–633 (1956).

    PubMed  CAS  Google Scholar 

  15. N. Canal, and A.M. Faccioli, Distribuzione della triptofano-perossidasi-ossidasi (TPO) in alcune specie animaliBo!!. Soc. Ital. Biol. Sper. 35305–308 (1959).

    CAS  Google Scholar 

  16. K. Altman and O. Greengard, Correlation of kynurenine excretion with liver tryptophan pynrolase levels in disease and after hydrocortisone inductionJ. Clin. Invest. 451527–1534 (1966).

    Article  PubMed  CAS  Google Scholar 

  17. W.E. Knox and A.H. Mehler, The adaptive increase of the tryptophan peroxidase-oxidase system of liverScience 113237–238 (1951).

    Article  PubMed  CAS  Google Scholar 

  18. W.E. Knox and V.H. Auerback, The hormonal control of tryptophan peroxidase in the ratJ. Biol. Chem. 214307–313 (1955).

    PubMed  CAS  Google Scholar 

  19. W.E. Knox, The regulation of tryptophan pyrrolase activity by tryptophanAdv. Enzyme Regul. 4287–297 (1966).

    Article  PubMed  CAS  Google Scholar 

  20. R.T. Schimke, E.W. Sweeney, and C.M. Berlin, The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolaseJ. Biol. Chem. 240322–331 (1965).

    PubMed  CAS  Google Scholar 

  21. R.T. Schimke, On the roles of synthesis and degradation in regulation of enzyme levels in mammalian tissuesCurr. Top. Cell Regul. 177–124 (1969).

    CAS  Google Scholar 

  22. A.A-B Badawy and M. EvansTheeffects of chemical porphyrogens and drugsonthe activityofrat liver tryptophan pyrrolaseBiochem. J. 136885–892 (1973).

    PubMed  CAS  Google Scholar 

  23. A.A-B. Badawy and M. Evans, The regulation of rat liver tryptophan pyrrolase by its cofactor haemexperiments with haematin and 5-aminolaevulinate and comparison with the substrate and hormonal mechanismsBiochem. J. 150511–520 (1975).

    PubMed  CAS  Google Scholar 

  24. P. Feigelson and O. Greengard, A microsomal iron-porphyrin activator of rat liver tryptophan pyrrolaseJ. Biol. Chem. 236153–157 (1961).

    PubMed  CAS  Google Scholar 

  25. Y. Watanabe, M. Fujiwara, R. Yoshida, O. Hayaishi, Stereospecificity of hepatic L-tryptophan 2,3dioxygenaseBiochem. J. 189393–405 (1980).

    PubMed  CAS  Google Scholar 

  26. A. A-B. Badawy and M. Evans, Animal liver tryptophan pyrrolases. Absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicityBiochem. J. 15879–88 (1976).

    PubMed  CAS  Google Scholar 

  27. J.E. Leklem, J. Woodford and R.R. Brown, Comparative tryptophan metabolism in cats and ratsComp. Biochem. Physiol. 3195–109 (1969).

    Article  PubMed  CAS  Google Scholar 

  28. F.T. De Castro, R.R Brown, and J.M. Price, The intermediary metabolism of tryptophan by cat and rat tissue preparationsJ. Biot. Chem. 228777–784 (1957).

    Google Scholar 

  29. E. Ginoulhiac, L.T. Tenconi and U. Bonomi, Attività enzimatiche della linea triptofano-acido nicotinico net diabete da pancreasectomia del rattoActa Vitamin.(Milano)18205–216 (1964).

    CAS  Google Scholar 

  30. A. De Antoni, C. Costa, G. Allegri, F. Baccichetti, S. Vanzan, Effect of psoralen-induced photodermatitis on tryptophan metabolism in ratsChem. Biol. Interactions 3411–18 (1981).

    Article  Google Scholar 

  31. G. Allegri, C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, F.F. Rubaltelli, Effect of exposure to light on enzyme activities and tryptophan metabolites of the kynurenine pathway in Wistar, in heterozygous and homozygous adult and newborn Gunn ratsPhotochem Photobiol. 35691–696 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, M. Appodia, G. Allegri, Strain differences in the tryptophan metabolite excretion and enzyme activities along the kynurenine pathway in ratsIt. J Biochem.31,412–418 (1982).

    CAS  Google Scholar 

  33. S. Fujigaki, K. Saito, H. Fujii, H. Wada, M. Seishima, Quantification of anthranilic acid and its related enzyme activity in several different species, in:Tryptophan Serotonin and Melatonin:Basic aspects and applicationedited by G. Huether et al. (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 625–628.

    Google Scholar 

  34. G. Allegri, C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, Effect of psoralen-induced photodermatitis on tryptophan metabolism in guinea pigsII Farmaco Ed. Sci. 36557–564 (1981).

    CAS  Google Scholar 

  35. A. A-B. Badawy and M. Evans, Guinea-pig liver tryptophan pyrrolase. Absence of detectable apoenzyme activity and of hormonal induction by cortisol and possible regulation by tryptophanBiochem. J. 138445–451 (1974).

    PubMed  CAS  Google Scholar 

  36. J. Hvitfelt and R.S. Santi, Tryptophan pyrrolase in the liver of guinea pig: The absence of hydrocortisone inductionBiochim. Biophys. Acta 258358–365 (1972).

    Article  CAS  Google Scholar 

  37. J.N. Brown and C.L. Dodgen, Fish liver tryptophan pyrrolase: The apparent absence of both hormonal and substrate inductionBiochim. Biophys. Acta 165463–469 (1968).

    Article  CAS  Google Scholar 

  38. R.J. Johnson and L.A. Dyer, Effect of orally administered tryptophan on tryptophan pyrrolase activity in ovine and bovineLife Sci. 51121–1124 (1966).

    Article  PubMed  CAS  Google Scholar 

  39. M. Spiegel, Tryptophan pyrrolase activity in the liver of adult rana pipiensBiol. Bull. 121547–553 (1961).

    Article  CAS  Google Scholar 

  40. K.L. Baughman and J.M. Franz, Control of tryptophan oxygenase and formamidase activity in the gerbilInt. J. Biochem. 2201–211 (1971).

    Article  CAS  Google Scholar 

  41. S. Yamamoto, and O. Hayaishi, Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan cleaving enzyme or enzymesJ. Biol. Chem. 2425260–5266 (1967).

    PubMed  CAS  Google Scholar 

  42. F. Hirata and O. Hayaishi, New degradative routes of 5-hydroxytryptophan and serotonin by intestinal tryptophan 2,3-dioxygenaseBiochem. Biophys. Res. Comm.47,112–1 119 (1972).

    Google Scholar 

  43. O. Hayaishi, F. Hirata, M. Fujiwara, T. Ohnishi, and T. Nukiwa, Catalytic properties and reaction mechanism of indoleamine 2,3-dioxygenaseFERS Proc. Meet. 40131–144 (1975).

    CAS  Google Scholar 

  44. F. Hirata and O. Hayaishi, Possible participation of superoxide anion in the intestinal tryptophan 2,3dioxygenase reactionJ. Biot. Chem. 2467825–7826 (1971).

    CAS  Google Scholar 

  45. F. Hirata and O. Hayaishi, Studies on indoleamine 2,3-dioxygenase. I Superoxide anion as substrate.J. Biol. Chem. 2505960–5966 (1975).

    PubMed  CAS  Google Scholar 

  46. T. Taniguchi, F. Hirata, and O. Hayaishi, Intracellular utilization of superoxide anion by indoleamine 2,3dioxygenase of rabbit enterocytesJ. Biol. Chem. 2522774–2776 (1977).

    PubMed  CAS  Google Scholar 

  47. O. Hayaishi, F. Hirata, T. Ohnishi, J.P. Henry, I. Rosenthal, and A. Katoh, lndoleamine 2,3-dioxygenase. Incorporation of ’802 and ’802 into the reaction productsJ. Biol. Chem. 2523548–3550 (1977).

    PubMed  CAS  Google Scholar 

  48. T. Shimizu, S. Nomiyama, F. Hirata and O. Hayaishi, Indoleamine 2,3-dioxygenase. Purification and sonie propertiesJ. Biol. Chem. 2534700–4706 (1978).

    PubMed  CAS  Google Scholar 

  49. R.R. Brown, Y. Ozaki, S.P. Datta, E.C. Borden, P.M. Sondel, D.G. Malone, Implications of interferon-induced tryptophan catabolism in cancer, autoimmune diseases and AIDS, in:Kynurenine and Serotonin Pathwaysedited by R. Schwarcz et al. (Plenum Press, New York, 1991), pp. 425–435.

    Chapter  Google Scholar 

  50. M.F. Taylor, G. Feng, Relationship between interferon-y, indoleamine 2,3-dioxygenase, and tryptophan catabolismFASEB J. 52516–2522 (1991).

    PubMed  CAS  Google Scholar 

  51. F.T. De Castro, J.M. Price, and R.R. Brown, Reduced triphosphopyridine-nucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenineJ. Am. Chem. Soc. 782904–2905 (1956).

    Article  Google Scholar 

  52. Y. Saito, O. Hayaishi, and S. Rothberg, Studies on oxygenases. Enzymatic formation of 3-hydroxy-Lkynurenine from L-kynurenineJ. Biol. Chem. 229921–934 (1957).

    PubMed  CAS  Google Scholar 

  53. H. Okamoto and O. Hayaishi, Solubilization and partial purification of kynurenine hydroxylase from mitochondrial outer membrane and its electron donorsArch. Biochem. Biophys. 131603–608 (1969).

    Article  PubMed  CAS  Google Scholar 

  54. Y. Nisimoto, F. Takeuchi, Y. Shibata, Isolation of L-kynurenine 3-hydroxylase from the mitochondria) outer membrane of rat liverJ. Biochem. 78573–581 (1975).

    PubMed  CAS  Google Scholar 

  55. Y. Kotake and Y.M. Nakayama, Über die Anthraniísäurebildung aus Kynurenin durch OrgansaftHoppeSaylers Z. Physiol. Chem. 27076–83 (1941).

    Google Scholar 

  56. A.E. Braunstein, E.V. Goryochenkova, T.S. Paskhinaja, Enzymatic formation of alanine from L-kynurenine and L-tryptophan, the role of vitamin B6 in this processBiokhimya 14163–179 (1949).

    Google Scholar 

  57. O. Wiss, and H. Fuchs, Über den Abbau von Kynurenin, Oxykynurenin und verwandten Substanzen durch RattenleberenzymExperientia(Basel)6472–473 (1950).

    Article  CAS  Google Scholar 

  58. G. Allegri, C.A. Benassi, E. Bocci, A. De Nadai, and B. Perissinotto, Tryptophan-pyrrolase, kynureninase and kynurenine transaminase activities of human renal tumorsBrit. J. Cancer 19754–760 (1965).

    Article  PubMed  CAS  Google Scholar 

  59. O. Wiss, Untersuchungen über das L-kynurenin-spaltende enzym “kynureninase”Heiv. Chico. Acta32, 1694–1698 (1949).

    Article  CAS  Google Scholar 

  60. E. McCoy and S. Chung, Studies of 3-OH kynureninase activity in liver homogenatesFed. Proc.21, 7 (1962).

    Google Scholar 

  61. A. De Antoni, C. Costa, F. Baccichetti, E.L. Cardin de Stefani, S. Vanzan, G. Allegri, Enzyme activities and metabolites along the kynurenine pathway in mice with Harding-Passey melanomaActa Vitaminol Enzymol. 583–87 (1983).

    Google Scholar 

  62. C. Costa, A. De Antoni, F. Baccichetti, M. Biasiolo, G. Allegri, Metabolites and enzyme activities involved in tryptophan metabolism in two different strains of mouseIt. J. Biochem. 33319–324 (1984).

    CAS  Google Scholar 

  63. A. Saran, Properties and partial purification of kynureninaseBiochem J. 70182–188 (1958).

    CAS  Google Scholar 

  64. M. Mason, Further characterization of the kynurenine transaminase of rat kidneyFed. Proc. 15310 (1956).

    Google Scholar 

  65. O. Wiss, Der enzymatische Abbau des Kynurenins in tierischen OrganismusHoppe-Seyler’s Z. Physiol. Chem. 293106–121 (1953).

    Article  CAS  Google Scholar 

  66. M. Mason, The kynurenine transaminase of rat kidneyJ. Biol. Chem. 211839–844 (1954).

    PubMed  CAS  Google Scholar 

  67. C.O. Stevens and L.M. Henderson, Beef liver 3-hydroxyanthranilic acid oxidaseJ. Biol. Chem. 2341188–1190 (1959).

    PubMed  CAS  Google Scholar 

  68. A.H. Mehler, Formation of picolinic and quinolinic acids following enzymatic oxidation of 3hydroxyanthranilic acidJ.Biol.Chem. 218241–254 (1956).

    PubMed  CAS  Google Scholar 

  69. A.H. Bokman, B.S. Schweigert, 3-Hydroxyanthranilic acid metabolism IV. Spectrophotometric evidence for the formation of an intermediateArch. Biochem. 33270–273 (1951).

    Article  PubMed  CAS  Google Scholar 

  70. O. Wiss, Die oxidative Spaltung der 3-OxyanthanilsäureZ. Naturforsch. 9B740–741 (1954).

    CAS  Google Scholar 

  71. A.H. Mehler, E.L. May, studies with carboxyl-labelled 3-hydroxyanthranilic and picolinic acid in vivo and in vitroJ. Biol. Chem. 223449–455 (1956).

    PubMed  CAS  Google Scholar 

  72. A. Ichiyama, S. Nakamura, H. Kawai, T. Honjo, Y. Nishizuka, O. Hayaishi, S. Senoh, Studies on the metabolism of the benzene ring of tryptophan in mammalian tissuesII.Enzymatic formation of aaminomuconic acid from 3-hydroxyanthranilic acidJ. Biol. Chem. 240740–749 (1965).

    PubMed  CAS  Google Scholar 

  73. M.R. Mawal and D.R. Deshmukh, a-Aminoadipate aminotransferase and kynurenine aminotransferase activities from rat kidney. Evidence for separate identityJ. Biol. Chem. 2662573–2575 (1991).

    PubMed  CAS  Google Scholar 

  74. A. Bertazzo, E. Ragazzi, M. Biasiolo, C.V.L. Costa, G. Allegri, Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbitsBiochim. Biophys. Acta 1527I67–175 (2001).

    Article  Google Scholar 

  75. W.A. Koontz, R. Shiman, Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assayJ. Biol. Chem. 251368–377 (1976).

    PubMed  CAS  Google Scholar 

  76. C. Beauchamp, I. Fridovich, Superoxide dismutase: Improved assays and an assay applicable to acrylamide gelsAnal. Biochem. 44276–287 (1971).

    Article  PubMed  CAS  Google Scholar 

  77. O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagentJ. Biol. Chem. 193265–275 (1951).

    PubMed  CAS  Google Scholar 

  78. W.D. Denckla and H.H. Dewey, The determination of tryptophan in plasma, liver, and urine, JLab. Clin. Med. 69160–169 (1967).

    PubMed  CAS  Google Scholar 

  79. W.E. Knox, Two mechanism which increase in vivo the liver tryptophan peroxidase activity: Specific enzyme adaptation and stimulation of the pituitary-adrenal systemBr. J. Exp. Pathol. 32462–469 (1951).

    PubMed  CAS  Google Scholar 

  80. O. Greengard, P. Feigelson, The activation and induction of rat liver tryptophan pyrrolase in vivo by its substrate, JBiol. Chem. 236158–161 (1961).

    PubMed  CAS  Google Scholar 

  81. R. Yoshida, Y. Urade, M. Tokuda, and O. Hayaishi, Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infectionProc. Natl. Acad. Sci. USA 764084–4086 (1979).

    Article  PubMed  CAS  Google Scholar 

  82. R. Yoshida, and O. Hayaishi, Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharideProc. Natl. Acad. Sci. USA 753998–4000 (1978).

    Article  PubMed  CAS  Google Scholar 

  83. Y. Urade, R. Yoshida, H. Kitamura, and O. Hayaishi, Induction of indoleamine 2,3-dioxygenase in alveolar interstitial cells of mouse lung by bacterial IipopolysaccharideJ. Biol. Chem. 2586621–6627 (1983).

    PubMed  CAS  Google Scholar 

  84. O. Takikawa, R. Yoshida, R. Kido, and O. Hayaishi, Tryptophan degradation ill mice initiated by indoleamine-2,3-dioxygenaseJ. Biol. Chem. 2613648–3653 (1986).

    PubMed  CAS  Google Scholar 

  85. J.S. Cook, C.I. Pogson and S.A. Smith, Indoleamine 2,3-dioxygenase: A new rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissuesBiochem. J. 189461–466 (1980).

    PubMed  CAS  Google Scholar 

  86. P.T. Daley-Yates, A.P. Powell, L.L. Smith, Pulmonary indoleamine 2,3-dioxygenase activity and its significance in the response of rats, mice, and rabbits to oxidative stressToxicol. Appl. Pharnmcol. 96222–232 (1988).

    Article  CAS  Google Scholar 

  87. E. Okuno, R. Kido, Kynureninase and kynurenine 3-hydroxylase in mammalian tissues, in:Kynurenine and Serotonin Pathwaysedited by R. Schwartz et al. (Plenum Press, New York, 1991), pp. 167–176.

    Chapter  Google Scholar 

  88. H. Okamoto, S. Yamamoto, M. Nozaki, O. Hayaishi, On the submitochondrial localization of L-kynurenine3-hydroxytaseBiochem. Biophys. Res. Comm. 26309–314 (1967).

    Article  PubMed  CAS  Google Scholar 

  89. A. De Antoni, C. Costa, G. Allegri, Studies on 3-hydroxykynureninase from rat liverActa Vitamin. Enzymol. 29339–343 (1975).

    Google Scholar 

  90. F. Takeuchi, H. Otsuka, Y. Shibata, Purification and properties of kynureninase from rat liverJ. Biochem. 88987–994 (1980).

    PubMed  CAS  Google Scholar 

  91. L. Musajo, G. Allegri, A. De Antoni, C. Costa, The problem of some naturally occurring substances and their correlated compounds interfering with Bs-dependent enzyme activities involved in tryptophan degradation. Xanthurenic acid accumulation in Bs-deficiencyActa Vitamin. Enzymol.(Milano) 29, 318–325 (1975).

    CAS  Google Scholar 

  92. A. De Antoni, C. costa, G. Allegri, Studies on the kynurenine aminotransferase activity in rat liver and kidneyHoppe-Seyler’s Z. Physiol. Chem. 3571707–1712 (1976).

    Article  PubMed  Google Scholar 

  93. M.C. Tobes, M. Mason, Alfa-aminoadipate aminotransferase and kynurenine aminotransferase. Purification, characterization and further evidence for identity, J.Biol. Chem.252, 4591–4599 (1977).

    PubMed  CAS  Google Scholar 

  94. M. Mason, B. Manning, Effects of steroid conjugates on availability of pyridoxal phosphate for kynureninase and kynurenine aminotransferase activity.Am. J. Clin. Mar. 24786–791 (1971).

    CAS  Google Scholar 

  95. H. Okamoto, O. Hayaishi, Intramitochondrial localization of kynurenine aminotransferaseJ. Biol. Chem. 2453603–3605 (1970).

    PubMed  CAS  Google Scholar 

  96. N. Ogasawara, Y. Hagino, Y. Kotake, Kynurenine-transaminase, kynureninase and the increase in xanthurenic acid excretionJ. Biochem.(Tokyo)52162–166 (1962).

    CAS  Google Scholar 

  97. T. Noguki, M. Nakatani, M. Minatogawa, Y. Morimoto, R. Kido, Subcellular distribution and properties of kynurenine pyruvate transaminase in rat kidneyHoppe Seyler’s Z. Physiol. Chem. 3561245–1250 (1975).

    Article  Google Scholar 

  98. Y. Hagino, T. Yatsuhashi, N. Ogasawara, Y. Kotake, The activities of some enzymes of tryptophan metabolism in fetal, neonatal and adult at liver and kidney I. Kynureninase and kynurenine aminotransferaseNagoya J. Med. Sci.27, 218–222 (1965).

    PubMed  CAS  Google Scholar 

  99. N. Nakatani, M. Morimoto, T. Noguchi, R. Kido, Subcellular distribution and properties of kynurenine transaminase in rat liverBiochem. J. 143303–310 (1974).

    PubMed  CAS  Google Scholar 

  100. C.V.L. Costa, E. Ragazzi, L. Caparrotta, A. Bertazzo, M, Biasiolo, G. Allegri, Liver and kidney kynurenine aminotransferase activity in different strain of ratsAdv. Exp. Med. Biol. 467629–635 (1999).

    Article  PubMed  CAS  Google Scholar 

  101. E. Okuno, C. Köhler, R. Schwarcz, Rat 3-hydroxyanthranilic acid oxygenase: Purification from the liver and immunocytochemical localization in brain, J.Neurochem. 49771–780 (1987).

    Article  PubMed  CAS  Google Scholar 

  102. P. Malerbe, C. Köhler, M. Da Prada, G. Lang. V. Kiefer, R. Schwarcz, H.-W. Lahm, A.M. Cesura, Molecular cloning and functional expression of human 3-hydroxyanthranilic acid dioxygenaseJ. Biol. Chem. 26913792–13797 (1994).

    Google Scholar 

  103. R.E. Priest, A.H. Bokman, B.S. Schweigert, 3-Hydroxyanthranilic acid metabolism V. Distribution of enzyme system in animal tissuesProc. Soc. Exp. Biol. Med. 78477–479 (1951).

    PubMed  CAS  Google Scholar 

  104. R.K. Gholson, L.V. Hankes, L.M. Henderson, 3-Hydroxyanthranilic acid as an intermediate in the oxidation of the indole.nucleus of tryptophanJ. Biol. Chem. 235132–135 (1960).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allegri, G., Ragazzi, E., Bertazzo, A., Costa, C.V.L., Rocchi, R. (2003). Tryptophan Metabolism Along the Kynurenine Pathway in Rats. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics