Skip to main content

Origin of the Saturn System

  • Chapter
Saturn from Cassini-Huygens

Abstract

Cassini mission results are providing new insights into the origin of the Saturn system and giant planet satellite systems generally. The chapter discusses current models for the formation of giant planets and their satellites and reviews major Cassini findings which help advance our understanding of the system's formation and evolution to its current state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibert, Y., et al., 2005. Modeling the Jovian subnebula — I. Thermo-dynamic conditions and migration of proto-satellites. Astronomy & Astrophysics. 439, 1205–1213.10.1051/0004-6361:20052841.

    ADS  Google Scholar 

  • Amelin, Y., et al., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science. 297, 1678–1683.

    ADS  Google Scholar 

  • Anders, E., Grevesse, N., 1989. Abundances of the elements — mete-oritic and solar. Geochimica Et Cosmochimica Acta. 53, 197–214.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 2001a. Io's gravity field and interior structure. Journal of Geophysical Research-Planets. 106, 32963–32969.

    Google Scholar 

  • Anderson, J. D., et al., 2001b. Shape, mean radius, gravity field, and interior structure of Callisto. Icarus. 153, 157–161.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 2005. Amalthea's density is less than that of water. Science. 308, 1291–1293.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 1996a. Gravitational constraints on the internal structure of Ganymede. Nature. 384, 541–543.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 1996b. Galileo gravity results and the internal structure of Io. Science. 272, 709–712.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 1997a. Europa's differentiated internal structure: Inferences from two Galileo encounters. Science. 276, 1236–1239.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 1997b. Gravitational evidence for an undifferen-tiated Callisto. Nature. 387, 264–266.

    ADS  Google Scholar 

  • Anderson, J. D., Schubert, G., 2007. Saturn's satellite Rhea is a homogeneous mix of rock and ice. Geophysical Research Letters. 34, L02202–L02202.

    Google Scholar 

  • Anderson, J. D., et al., 1998a. Distribution of rock, metals, and ices in Callisto. Science. 280, 1573–1576.

    ADS  Google Scholar 

  • Anderson, J. D., et al., 1998b. Europa's differentiated internal structure: Inferences from four Galileo encounters. Science. 281, 2019–2022.

    ADS  Google Scholar 

  • Asplund, M., et al., 2006. The solar chemical composition. Nuclear Physics A. 777, 1–4.10.1016/j.nuclphysa.2005.06.010.

    ADS  Google Scholar 

  • Ayliffe, B. A., Bate, M. R., 2009. Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets. Monthly Notices of the Royal Astronomical Society. 397, 657–665.

    ADS  Google Scholar 

  • Barr, A. C., Canup, R. M., 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus. 198, 163–177.10.1016/j.icarus.2008.07.004.

    ADS  Google Scholar 

  • Benz, W., et al., 1988. Collisional stripping of mercurys mantle. Icarus. 74, 516–528.

    ADS  Google Scholar 

  • Bodenheimer, P., et al., Models of the in situ formation of detected ex-trasolar giant planets. 2000, pp. 2–14.

    Google Scholar 

  • Boss, A. P., 2007. The solar nebula. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. 1, Meteorites, Comets and Planets. Elsevier Pergamon.doi:10.1016/B0–08–043751–6/01061–6.

    Google Scholar 

  • Brown, M. E., Schaller, E. L., 2007. The mass of dwarf planet Eris. Science. 316, 1585–1585.10.1126/science.1139415.

    ADS  Google Scholar 

  • Bryden, G., et al., 1999. Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. As-trophysical Journal. 514, 344–367.

    ADS  Google Scholar 

  • Bryden, G., et al., 2000. Protoplanetary formation. I. Neptune. Astro-physical Journal. 544, 481–495.

    ADS  Google Scholar 

  • Buie, M. W., et al., 2006. Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2. Astronomical Journal. 132, 290–298.

    ADS  Google Scholar 

  • Cameron, A. G. W., 1978. Physics of primitive solar accretion disk. Moon and the Planets. 18, 5–40.

    ADS  Google Scholar 

  • Cameron, A. G. W., 1981. Elementary and nuclidic abundances in the solar system. In: C. A. Barns, et al., (Eds.), Essays in Nuclear Astrophysics. Cambridge University Press, New York.

    Google Scholar 

  • Canup, R. M., Ward, W. R., 2002. Formation of the Galilean satellites: Conditions of accretion. The Astronomical Journal. 124, 3404– 3423.

    ADS  Google Scholar 

  • Canup, R. M., Ward, W. R., 2009. Origin of Europa and the Galilean satellites. In: W. McKinnon, et al., (Eds.), Europa. University of Arizona Press, Tucson.

    Google Scholar 

  • Castillo-Rogez, J. C., et al., 2007. Iapetus'geophysics: Rotation rate, shape, and equatorial ridge. Icarus. 190, 179–202.10.1016/ j.icarus.2007.02.018.

    ADS  Google Scholar 

  • Charnoz, S., Morbidelli, A., 2003. Coupling dynamical and collisional evolution of small bodies: An application to the early ejection of planetesimals from the Jupiter-Saturn region. Icarus. 166, 141– 156.10.1016/s0019–1035(03)00213–6.

    ADS  Google Scholar 

  • Charnoz, S., et al., 2009 Did Saturn's rings form during the Late Heavy Bombardment? Icarus. 199, 413–428.10.1016/j.icarus.2008.10.019.

    ADS  Google Scholar 

  • Consolmagno, G. J., Lewis, J. S., 1977. Preliminary thermal history models of icy satellites. In: J. A. Burns, (Ed.), Planetary Satellites. University of Arizona Press, Tucson, 492–500.

    Google Scholar 

  • Consolmagno, G. J., Lewis, J. S., 1978. Evolution of icy satellite interiors and surfaces. Icarus. 34, 280–293.

    ADS  Google Scholar 

  • Coradini, A., et al., 1989. Formation of the satellites of the outer solar system — Sources of their atmospheres. In: S. Atreya, et al., (Eds.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, pp. 723–762.

    Google Scholar 

  • Cuzzi, J. N., et al., 1993. Particle gas-dynamics in the midplane of a protoplanetary nebula. Icarus. 106, 102–134.

    ADS  Google Scholar 

  • Cuzzi, J. N., Zahnle, K. J., 2004. Material enhancement in protoplane-tary nebulae by particle drift through evaporation fronts. Astrophys-ical Journal. 614, 490–496.

    ADS  Google Scholar 

  • D'Angelo, G., et al., 2003. Thermohydrodynamics of circumstellar disks with high-mass planets. Astrophysical Journal. 599, 548–576.

    ADS  Google Scholar 

  • Davis, A. M. (Ed.), 2004. Treatise on Geochemistry: Vol 1. Me teorites, Comets, and Planets. Elsevier, Pergamon, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo.

    Google Scholar 

  • Dominik, C., et al., 2007. Growth of dust as the initial step toward planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 783–800.

    Google Scholar 

  • Dougherty, M. K., et al., 2006. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science. 311, 1406–1409.

    ADS  Google Scholar 

  • Durham, W. B., et al., 2005. Cold compaction of water ice. Geophysical Research Letters. 32.L18202, 10.1029/2005gl023484.

    ADS  Google Scholar 

  • Durisen, R. H., et al., 2007. Gravitational instabilities in gaseous pro-toplanetary disks and implications for giant planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 607–622.

    Google Scholar 

  • Dyudina, U. A., et al., 2007. Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus. 190, 545–555.10.1016/j.icarus.2007.03.035.

    ADS  Google Scholar 

  • Espaillat, C., et al., 2007. On the diversity of the Taurus transitional disks: UX Tauri A and LkCa 15. Astrophysical Journal. 670, L135–L138.

    ADS  Google Scholar 

  • Estrada, P. R., Mosqueira, I., 2006. A gas-poor planetesimal capture model for the formation of giant planet satellite systems. Icarus. 181, 486–509.10.1016/j.icarus.2005.11.006.

    ADS  Google Scholar 

  • Estrada, P. R., et al., 2009. Formation of Jupiter and conditions for accretion of the Galilean satellites. In: W. McKinnon, et al., (Eds.), Europa. University of Arizona Press, Tucson.

    Google Scholar 

  • Fanale, F. P., et al., 1977. Io's surface and the histories of the Galilean satellites. In: J. A. Burns, (Ed.), Planetary Satellites. University of Arizona Press, Tucson, pp. 379–405.

    Google Scholar 

  • Goldreich, P., Tremaine, S., 1980. Disk-satellite interactions. Astro-physical Journal. 241, 425–441.

    MathSciNet  ADS  Google Scholar 

  • Goldreich, P., et al., 2004. Final stages of planet formation. Astrophys-ical Journal. 614, 497–507.

    ADS  Google Scholar 

  • Gomes, R., et al., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435, 466–469.

    ADS  Google Scholar 

  • Grevesse, N., et al., 2007. The solar chemical composition. Space Science Reviews. 130, 105–114.10.1007/s11214–007–9173–7.

    ADS  Google Scholar 

  • Grossman, L., 1972. Condensation in primitive solar nebula. Geochim-ica Et Cosmochimica Acta. 36, 597–619.

    ADS  Google Scholar 

  • Grossman, L., Larimer, J. W., 1974. Early chemical history of solar-system. Reviews of Geophysics. 12, 71–101.

    ADS  Google Scholar 

  • Halliday, A. N., 2007. The origin and earliest history of the Earth. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. 1. Meteorites, Comets, and Planets. Elsevier, Pergamon. doi:10.1016/B0– 08–043751–6/01070–7.

    Google Scholar 

  • Hansen, C. J., et al., 2006. Enceladus'water vapor plume. Science. 311, 1422–5.

    ADS  Google Scholar 

  • Hubbard, W. B., Anderson, J. D., 1978. Possible flyby measurements of Galilean satellite interior structure. Icarus. 33, 336–341.

    ADS  Google Scholar 

  • Hubickyj, O., et al., 2005. Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus. 179, 415– 431.10.1016/j.icarus.2005.06.021.

    ADS  Google Scholar 

  • Iess, L., et al., 2007. Gravity field and interior of Rhea from Cassini data analysis. Icarus. 190, 585–593.

    ADS  Google Scholar 

  • Jacobson, R. A., 2004. The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and earth-based observations. Astronomical Journal. 18, 492–501.

    ADS  Google Scholar 

  • Jacobson, R. A., et al., 2006. The GM values of Mimas and Tethys and the liberation of methane. Astronomical Journal. 132, 711–713.

    ADS  Google Scholar 

  • Jewitt, D. C., Sheppard, S. S., 2002. Physical properties of trans-Neptunian object (20000) Varuna. Astronomical Journal. 123, 2110–2120.

    ADS  Google Scholar 

  • Jewitt, D., et al., 2007. Protostars and Planets V. University of Arizona Press, Tucson, pp. 863–878.

    Google Scholar 

  • Johnson, T. V., McGetchin, T. R., 1973. Topography on satellite surfaces and the shape of asteroids. Icarus. 18, 612–620

    ADS  Google Scholar 

  • Johnson, T. V., Lunine, J. I., 2005. Saturn's moon Phoebe as a captured body from the outer Solar System. Nature. 435, 69–71.

    ADS  Google Scholar 

  • Johnson, T. V., et al., 2007 Thermal and dynamical histories of Saturn's satellites: Evidence for the presence of short lived radioactive isotopes. In: R. Guandalini, et al., (Eds.), The Ninth Torino Workshop on Evolution and Nucleosynthesis in AGB Stars and The Second Perugia Workshop on Nuclear Astrophysics, Vol. 1001. American Institute of Physics, Perugia, Italy, pp. 262–268.

    Google Scholar 

  • Joswiak, D. J., et al., 2008. Mineralogical origins of Wild 2 comet particles collected by the Stardust spacecraft. Geochimica Et Cos-mochimica Acta. 72, A441–A441.

    ADS  Google Scholar 

  • Kenyon, S. J., Luu, J. X., 1999. Accretion in the early outer solar system. Astrophysical Journal. 526, 465–470.

    ADS  Google Scholar 

  • Khurana, K. K., et al., 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature. 395, 777–780.

    ADS  Google Scholar 

  • Kivelson, M. G., et al., 1997. The magnetic field and magnetosphere of Ganymede. Geophysical Research Letters. 24, 2155–2158.

    ADS  Google Scholar 

  • Kivelson, M. G., et al., 2000. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science. 289, 1340– 1343.

    ADS  Google Scholar 

  • Kivelson, M. G., et al., 1996. Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature. 384, 537–541.

    ADS  Google Scholar 

  • Kivelson, M. G., et al., 1999. Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. Journal of Geophysical Research-Space Physics. 104, 4609–4625.

    Google Scholar 

  • Klahr, H., Kley, W., 2006. 3D-radiation hydro simulations of disk-planet interactions — I. Numerical algorithm and test cases. Astronomy & Astrophysics. 445, 747–758.10.1051/0004–6361:20053238.

    ADS  Google Scholar 

  • Kokubo, E., Ida, S., 1998. Oligarchic growth of protoplanets. Icarus. 131, 171–178.

    ADS  Google Scholar 

  • Kuiper, G. P., 1951. In: J. A. Hynek, (Ed.), Proceedings of a Topical Symposium. McGraw-Hill, New York, pp. 357–424.

    Google Scholar 

  • Leisner, J. S., et al., 2008. The interior of Iapetus: Constraints provided by the solar wind interaction. Eos Tans. AGU. 89 (53), Fall Meet. Suppl., Abstract P31C-08.

    Google Scholar 

  • Levison, H. F., et al., 2007. Planet migration in planetesimal disks. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 669–684.

    Google Scholar 

  • Levison, H. F., et al., 2008. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus. 196, 258–273.10.1016/j.icarus.2007.11.035.

    ADS  Google Scholar 

  • Lewis, J. S., 1971. Satellites of outer planets — their physical and chemical nature. Icarus. 15, 174–185.

    ADS  Google Scholar 

  • Lewis, J. S., 1972. Low-temperature condensation from solar nebula. Icarus. 16, 241–252.

    ADS  Google Scholar 

  • Lewis, J. S., 1973. Chemistry of outer solar system. Space Science Reviews. 14, 401–411.

    ADS  Google Scholar 

  • Lewis, J. S., Prinn, R. G., 1980. Kinetic inhibition of Co and N-2 reduction in the solar nebula. Astrophysical Journal. 238, 357–364.

    ADS  Google Scholar 

  • Lissauer, J. J., 1987. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus. 69, 249–265.

    ADS  Google Scholar 

  • Lissauer, J. J., 2001. Time for gas planets to grow. Nature. 409, 23–24.

    ADS  Google Scholar 

  • Lissauer, J. J., Stevenson, D. J., 2007. Formation of giant planets. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 591–606.

    Google Scholar 

  • Lissauer, J. J., et al., 2009. Models of Jupiter's growth incorporating thermal and hydrodynamic constraints. Icarus. 199, 338– 350.doi:10.1016/j.icarus.2008.10.004.

    ADS  Google Scholar 

  • Lorenz, R. D., et al., 2008. Titan's rotation reveals an internal ocean and changing zonal winds. Science. 319, 1649–1651.

    ADS  Google Scholar 

  • Lunine, J. I., Atreya, S. K., 2008. The methane cycle on Titan. Nature Geoscience. 1, 159–164.

    ADS  Google Scholar 

  • Lupo, M. J., Lewis, J. S., 1979. Mass-radius relationships in icy satellites. Icarus. 40, 157–170.

    ADS  Google Scholar 

  • Mackenzie, R. A., et al., 2008. A non-hydrostatic Rhea. Geophysical Research Letters. 35, L05204–L05204.

    Google Scholar 

  • Makalkin, A. B., Dorofeeva, V. A., 2006. Models of the protosatellite disk of Saturn: Conditions for Titan's formation. Solar System Research. 40, 441–455.10.1134/s0038094606060013.

    ADS  Google Scholar 

  • Makalkin, A. B., et al., 1999. Modeling the protosatellite circum-Jovian accretion disk: An estimate of the basic parameters. Solar System Research. 33, 456.

    ADS  Google Scholar 

  • Matson, D. L., et al., 2007. Enceladus'plume: Compositional evidence for a hot interior. Icarus. 187, 569–73.

    ADS  Google Scholar 

  • McKeegan, K. D., Davies, A. M., 1.16 Early solar system chronology. In: A. Davis, (Ed.), Treatise on Geochemistry: Vol. 1. Meteorites, Comets, and Planets. Elsevier, 2007.doi:10.1016/B0–08–043751– 6/01147–6.

    Google Scholar 

  • McKinnon, W. B., 1997. Mystery of Callisto: Is it undifferentiated? Icarus. 130, 540–543.

    ADS  Google Scholar 

  • Merk, R., Prialnik, D., 2003. Early thermal and structural evolution of small bodies in the trans-Neptunian zone. Earth Moon and Planets. 92, 359–374.

    ADS  Google Scholar 

  • Meyer, M. R., et al., 2007. Evolution of circumstellar disks around normal stars: Placing our solar system in context. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 573–588.

    Google Scholar 

  • Morbidelli, A., Crida, A., 2007. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus. 191, 158– 171.10.1016/j.icarus.2007.04.001.

    ADS  Google Scholar 

  • Morbidelli, A., et al., 2005. Chaotic capture of Jupiter's Trojan asteroids in the early solar system. Nature. 435, 462–465.

    ADS  Google Scholar 

  • Mosqueira, I., Estrada, P. R., 2003a. Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus. 163, 198–231.

    ADS  Google Scholar 

  • Mosqueira, I., Estrada, P. R., 2003b. Formation of the regular satellites of giant planets in an extended gaseous nebula II: Satellite migration and survival. Icarus. 163, 232–255.

    ADS  Google Scholar 

  • Mosqueira, I., Estrada, P. R., 2005. On the origin of the Saturnian satellite system: Did Iapetus form in-situ? Lunar and Planetary Science XXXVI, Lunar and Planetary Institute, Houston. Abstract No. 1951.

    Google Scholar 

  • Mousis, O., Gautier, D., 2004. Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula. Planetary and Space Science. 52, 361– 370.10.1016/j.pss.2003.06.004.

    ADS  Google Scholar 

  • Nesvorny, D., et al., 2007. Capture of irregular satellites during planetary encounters. Astronomical Journal. 133, 1962–1976.

    ADS  Google Scholar 

  • Nicholson, P. D., et al., 2008. Irregular satellites of the giant planets. In: M. A. Barucci, et al., (Eds.), The Solar System Beyond Neptune. University of Arizona Press with Lunar and Planetary Institute, Tucson, pp. 411–424.

    Google Scholar 

  • Nimmo, F., Matsuyama, I., 2007. Reorientation of icy satellites by impact basins. Geophysical Research Letters. 34.L19203, 10.1029/2007gl030798.

    ADS  Google Scholar 

  • Nimmo, F., et al., 2007. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature. 447, 289–291.

    ADS  Google Scholar 

  • Papaloizou, J. C. B., et al., 2007. Disk-planet ineteractions during planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 655–668.

    Google Scholar 

  • Pollack, J. B., et al., 1976. Formation of Saturn's satellites and rings, as influenced by Saturn's contraction history. Icarus. 29, 35–48.

    ADS  Google Scholar 

  • Porco, C. C., et al., 2005a. Cassini imaging science: Initial results on Phoebe and Iapetus. Science. 307, 1237–1242.

    ADS  Google Scholar 

  • Porco, C. C., et al., 2005b. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science. 307, 1226– 1236.

    ADS  Google Scholar 

  • Porco, C. C., et al., 2006. Cassini observes the active south pole of Ence-ladus. Science. 311, 1393–1401.

    ADS  Google Scholar 

  • Porco, C. C., et al., 2007. Saturn's small inner satellites: Clues to their origins. Science. 318, 1602–1607.10.1126/science.1143977.

    ADS  Google Scholar 

  • Prinn, R. G., Fegley, B., 1981. Kinetic inhibition of Co and N-2 reduction in circumplanetary nebulae — implications for satellite composition. Astrophysical Journal. 249, 308–317.

    ADS  Google Scholar 

  • Prinn, R. G., Fegley, B., 1989. Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. In: S. Atreya, (Ed.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, Arizona, pp. 78–136.

    Google Scholar 

  • Rabinowitz, D. L., et al., 2006. Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, pluto-sized object in the Kuiper Belt. Astrophysical Journal. 639, 1238–1251.

    ADS  Google Scholar 

  • Reipurth, B., et al. (Eds.), 2007. Protostars and Planets V. University of Arizona Press, Tucson.

    Google Scholar 

  • Reynolds, R. T., Cassen, P. M., 1979. Internal structure of the major satellites of the outer planets. Geophysical Research Letters. 6, 121–124.

    ADS  Google Scholar 

  • Safronov, V. S., 1967. Protoplanetary cloud and its evolution. Soviet Astronomy AJ USSR. 10, 650–658.

    ADS  Google Scholar 

  • Safronov, V. S., 1969. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Translated in 1972 as NASA TTF-667). Nauka, Moscow.

    Google Scholar 

  • Safronov, V. S., 1991. Kuiper prize lecture — some problems in the formation of the planets. Icarus. 94, 260–271.

    ADS  Google Scholar 

  • Safronov, V. S., Ruskol, E. L., 1994. Formation and evolution of planets. Astrophysics and Space Science. 212, 13–22.

    ADS  Google Scholar 

  • Schubert, G., et al., 1986. Thermal histories, compositions, and internal structures of the moons of the solar system. In: J. A. Burns, M. S. Matthews, (Eds.), Satellites. University of Arizona Press, Tucson, pp. 224–292.

    Google Scholar 

  • Schubert, G., et al., 2004. Interior composition, structure and dynamics of the Galilean satellites. In: F. Bagenal, et al., (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, pp. 281–306.

    Google Scholar 

  • Schubert, G., et al., 2007. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus. 188, 345–355.

    ADS  Google Scholar 

  • Shu, F. H., et al., 1993. Photoevaporation of the solar nebula and the formation of the giant planets. Icarus. 106, 92–101.

    ADS  Google Scholar 

  • Spencer, J. R., et al., 2006. Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science. 311, 1401– 1405.

    ADS  Google Scholar 

  • Spergel, D. N., et al., 2007. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology. Astrophysical Journal Supplement Series. 170, 377–408.

    ADS  Google Scholar 

  • Squyres, S. W., et al., 1983. The evolution of Enceladus. Icarus. 53, 319–331.

    ADS  Google Scholar 

  • Stansberry, J. A., et al., 2006. The albedo, size, and density of binary Kuiper Belt object (47171) 1999 TC36. Astrophysical Journal. 643, 556–566.

    ADS  Google Scholar 

  • Stern, S. A., Weissman, P. R., 2001. Rapid collisional evolution of comets during the formation of the Oort cloud. Nature. 409, 589–591.

    ADS  Google Scholar 

  • Stevenson, D. J., Lunine, J. I., 1988. Rapid formation of Jupiter by diffusive redistribution of water-vapor in the solar nebula. Icarus. 75, 146–155.

    ADS  Google Scholar 

  • Stevenson, D. J., et al., 1986. Origins of satellites. In: J. A. Burns, M. S. Matthews, (Eds.), Satellites. University of Arizona Press, Tucson.

    Google Scholar 

  • Thomas, P. C., et al., 2007. Shapes of the Saturnian icy satellites and their significance. Icarus. 190, 573–584.

    ADS  Google Scholar 

  • Tobie, G., et al., 2006. Episodic outgassing as the origin of atmospheric methane on Titan. Nature. 440, 61–64.

    ADS  Google Scholar 

  • Tsiganis, K., et al., 2005. Origin of the orbital architecture of the giant planets of the solar system. Nature. 435, 459–461.

    ADS  Google Scholar 

  • Turrini, D., et al., 2008. A new perspective on the irregular satellites of Saturn – I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society. 391, 1029–1051.10.1111/j.1365– 2966.2008.13909.x.

    ADS  Google Scholar 

  • Turrini, D., et al., 2009. A new perspective on the irregular satellites of Saturn — II. Dynamical and physical origin. Monthly Notices of the Royal Astronomical Society. 392, 455–474.10.1111/j.1365– 2966.2008.14100.x.

    ADS  Google Scholar 

  • Waite, J. H., Jr., et al., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science. 311, 1419–1422.

    ADS  Google Scholar 

  • Waite Jr, J. H., et al., 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature. 460, 487– 490.doi:10.1038/nature08153.

    ADS  Google Scholar 

  • Ward, W. R., 1986. Density waves in the solar nebula — Differential lindblad torque. Icarus. 67, 164–180.

    ADS  Google Scholar 

  • Ward, W. R., 1997. Protoplanet migration by nebula tides. Icarus. 126, 261–281.

    ADS  Google Scholar 

  • Warren, P. H., 2007. The moon. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. Meteorites, Comets, and Planets. Elsevier, Perg-amon, 10.1016/B0–08–043751–6/01149-X.

    Google Scholar 

  • Westphal, A. J., et al., 2008. Stardust interstellar preliminary examination — First results. Meteoritics & Planetary Science. 43, A169– A169.

    Google Scholar 

  • Wetherill, G. W., 1980. Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics. 18, 77–113.

    ADS  Google Scholar 

  • Wetherill, G. W., Stewart, G. R., 1993. Formation of planetary embryos — effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus. 106, 190–209.

    ADS  Google Scholar 

  • Wong, M. H., et al., 2008. Oxygen and other volatiles in the giant planets and their satellites. In: G. J. MacPherson, (Ed.), Oxygen in the Solar System. Mineralogical Society of America, Chantilly, VA, pp. 241–246.

    Google Scholar 

  • Yoder, C. F., 1995. Astrometric and geodetic properties of earth and the solar system. In: T. J. Ahrens, (Ed.), AGU Reference Shelf1: Global Earth Physics, A Handbook of Physical Constants. American Geophysical Union, Washington D.C., pp. 1–31.

    Google Scholar 

  • Zahnle, K., et al., 2003. Cratering rates in the outer solar system. Icarus. 163, 263–289.

    ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Jack J. Lissauer (NASA Ames Research Center) for many useful discussions and comments on an earlier draft of this work.

A portion of this work (TVJ) has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torrence V. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johnson, T.V., Estrada, P.R. (2009). Origin of the Saturn System. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_3

Download citation

Publish with us

Policies and ethics