Skip to main content

Ecology Of Actinorhizal Plants

  • Chapter
Nitrogen-fixing Actinorhizal Symbioses

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arveby, A. S., and Huss-Danell, K. (1988). Presence and dispersal of infective Frankia in peat and meadow soils in Sweden. Biol. Fertil. Soils, 6, 39–44.

    Google Scholar 

  • Baker, D., and Miller, N. G. (1980). Ultrastructural evidence for the existence of actinorhizal symbioses in the late Pleistocene. Can. J. Bot., 58, 1612–1620.

    Google Scholar 

  • Baker, D., and O’Keefe, D. (1984). A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant Soil, 78, 23–28.

    Google Scholar 

  • Baker, D. D., and Schwintzer, C. W. (1990). Introduction. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 3-13). New York, NY: Academic Press.

    Google Scholar 

  • Barlow, B. A. (1983). Casuarinas, a taxonomic and biogeographic review. In S. J. Midgley, J. W. Turnbull, and R. D. Johnston (Eds.), Casuarina ecology, managementandutilization (pp. 10-18). Melbourne, Australia: CSIRO.

    Google Scholar 

  • Batzli, J. M., and Dawson, J. O. (1999). Development of flood-induced lenticels in red alder nodules prior to the restoration of nitrogenase activity. Can. J. Bot., 77, 1373–1377.

    CAS  Google Scholar 

  • Becking, J. H. (1970). Frankiaceae, fam. Nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886. Int. J. Syst. Bacteriol., 20, 201–220.

    Google Scholar 

  • Benecke, U. (1969). Symbionts of alder nodules in New Zealand. Plant Soil, 30, 149–149.

    Google Scholar 

  • Benoit, L. F., and Berry, A. M. (1997). Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant., 99, 588–593.

    CAS  Google Scholar 

  • Benoit, P., Müller, A., Diem, H. G., and Schwenke, J. (1992). High-molecular-mass multi-catalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR. J. Bacteriol., 174, 1495–1504.

    Google Scholar 

  • Benson, D. R., and Eveleigh, D. E. (1979). Nitrogen fixing homogenates of Myrica pensylvanica (bayberry) non-legume root nodules. Soil Biol. Biochem., 11, 331–334.

    CAS  Google Scholar 

  • Bermudez de Castro, F., Miguel, C., and Rodriguez-Barrueco, C. (1976). A study of the capacity of soil to induce nodules of Alnus glutinosa (L.) Gaertn. and Myrica gale L. with special reference to the specificity of the endophytes. Ann. Microbiol., 127A, 307-315.

    Google Scholar 

  • Bond, G. (1951). The fixation of nitrogen associated with the root nodules of Myrica gale L., with special reference to its pH relation and ecological significance. Ann. Bot., 15, 447–459.

    CAS  Google Scholar 

  • Bond, G. (1957). The development and significance of the root nodules of Casuarina. Ann. Bot., 21, 373-380.

    Google Scholar 

  • Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixation systems. In J. C. Gordon and C. T. Wheeler (Eds.), Biolgical nitrogen fixation in forest ecosystems: Foundationsandapplications (pp. 55-87). The Hague, The Netherlands: Martinus Nijhoff/Dr. W. Junk.

    Google Scholar 

  • Bond, G., and Mackintosh, A. H. (1975). Effect of nitrate nitrogen on the nodule symbioses of Coriaria and Hippophae. P. Roy. Soc. Lond. B Bio., 190, 199–209.

    Google Scholar 

  • Bormann, B. T., Cromack, K., and Russel, W. O. (1994). Influences of red alder on soils andlong-term ecosystem productivity. In D. E. Hibbs, D. S. DeBell and R. F. Tarrant (Eds.), The biologyandmanagement of red alders (pp. 47-56). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Boyer, G. L., Kane, S. A., Alexander, J. A., and D. B. Aronson. (1999). Siderophore formation in iron-limited cultures of Frankia sp. 52065 and Frankia sp. CeSI5. Can. J. Bot., 77 1316-1320.

    CAS  Google Scholar 

  • Bryant, J. P., Wieland, G. D., Reichardt, P. B., Lewis, V. E., and McCarthy, M. C. (1983). Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science, 222, 1023–1025.

    PubMed  CAS  Google Scholar 

  • Burleigh, S. H., and Dawson, J. O. (1994). Occurrence of Myrica-nodulating Frankia in Hawaiian volcanic soils. Plant Soil, 164, 283–289.

    CAS  Google Scholar 

  • Burleigh, S. H., and Dawson, J. O. (1995). Spores of Frankia strain HFPCcI3 nodulate Casuarina equisetifolia after passage through the digestive tracts of captive parakeets (Melopsittacus undulatus). Can. J. Bot., 75, 1527–1530.

    Google Scholar 

  • Burleigh, S., and Torrey, J. G. (1990). Effectiveness of different Frankia cell types as inocula for the actinorhizal plant Casuarina. App. Environ. Microbiol., 56, 2565-2567.

    Google Scholar 

  • Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899–902.

    PubMed  Google Scholar 

  • Carlson, P. J., and Dawson, J. O. (1985). Soil nitrogen changes, early growth, and response to soil internal drainage of a plantation of Alnus jorullensis in the Colombian highlands. Turrialba, 35, 141-150.

    Google Scholar 

  • Chepstow-Lusty, A. J., Bennett, K. D., Fjeldsa, J., Kendall, A., Galliano, W., and Tupayachi Herrera, A. (1998). Tracing 4,000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mt. Res. Dev., 18, 159–172.

    Google Scholar 

  • Clausen, T. P., Reichardt, P. B., and Bryant, J. P. (1987). Pinosylvin and pinosylvin methyl ether as feeding deterrents in green alder. J. Chem. Ecol., 12, 2117–132.

    Google Scholar 

  • Clawson, M. L., Carú, M., and Benson, D. R. (1998). Diversity of Frankia strains of root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl. Environ. Microbiol., 64, 3539–3543.

    PubMed  CAS  Google Scholar 

  • Clawson, M. L., Gawronski, J., and Benson, D. R. (1999). Dominance of Frankia strains instands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can. J. Bot., 77, 1203–1207.

    Google Scholar 

  • Côté, B., Carlson, R. W., and Dawson, J. O. (1988). Leaf photosynthetic characteristics of seedlings of actinorhizal Alnusssp. and Elaeagnus spp. Photosynth. Res., 16, 211–218.

    Google Scholar 

  • Côté, B., and Dawson, J. O. (1986). Autumnal changes in total nitrogen, salt-extractedproteins, and amino acids in leaves and adjacent bark of black alder, eastern cottonwood, and white basswood. Physiol. Plant., 67, 102–108.

    Google Scholar 

  • Coyne, P. D. (1973). (Ph.D. thesis, Australian National University, Canberra, Australia.). Summarized by Torrey, J. G. Casuarina: Actinorhizal nitrogen-fixing tree of the tropics. In Biological nitrogen fixation technology for tropical agriculture (pp. 427-439). Cali, Colombia: Centro Internacional de Agricultura Tropical.

    Google Scholar 

  • Dalton, D. A., and Zobel, D. B. (1977). Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil, 48, 57–80.

    CAS  Google Scholar 

  • Dawson, J. O. (1986). Actinorhizal plants: Their use in forestry and agriculture. Outlook Agr., 15, 202-208.

    Google Scholar 

  • Dawson, J. O. (1990). Interactions among actinorhizal and associated species. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 288-316). New York, NY: Academic Press.

    Google Scholar 

  • Dawson, J. O. (1992). Nitrogen fixation in forestry and agroforestry. In F. B. Metting, Jr. (Ed.), Soil microbial ecology (pp. 227-253). Basel, Switzerland: Marcel Decker.

    Google Scholar 

  • Dawson, J. O., and Gibson, A. H. (1987). Sensitivity to sodium chloride of selected Frankia isolates from Casuarina, Allocasuarina and North American host plants. Physiol. Plant., 70, 272–278.

    CAS  Google Scholar 

  • Dawson, J. O., and Gordon, J. C. (1979). Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot. Gaz., 140, S70-S75.

    Google Scholar 

  • Dawson, J. O., and Klemp, M. T. (1987). Variation in the capacity of black alder to nodulate in central Illinois soils. In R. L. Hay, F. W. Woods, and H. DeSelm (Eds.), Sixth central hardwood forest conference (pp. 255-260). Knoxville, TN: Department of Forestry, Wildlife, and Fisheries, University of Tennessee.

    Google Scholar 

  • Dawson, J. O., Kowalski, D. G., and Dart, P. J. (1989). Variation with soil depth, topographicposition and host species in the capacity of soils from an Australian locale to nodulate Casuarina and Allocasuarina seedlings. Plant Soil, 118, 1–13.

    Google Scholar 

  • Dawson, J. O., and Seymour, P. E. (1983). Effects of juglone concentration on growth in vitro of Frankia ArI3 and Rhizobium japonicum strain 71. J. Chem. Ecol., 9, 1175-1183.

    Google Scholar 

  • Diem, H. G., and Dommergues, Y. R. (1990). Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 317-342). New York, NY: Academic Press.

    Google Scholar 

  • Diem, H. G., and Gauthier, D. (1982). Effet de l’infection endomycorrhizienne (Glomus mosseae) sur la nodulation et la croissance de Casuarina equisetifolia. C.R. Acad. Sci. III -Vie 294, 215-218.

    Google Scholar 

  • Dixon, R. O. D., and Wheeler, C. T. (1983). Biochemical, physiological, and environmental aspects of symbiotic nitrogen fixation. In J. C. Gordon and C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: foundationsandapplications (pp. 107-171). The Hague, The Netherlands: Nijhoff/Dr. W. Junk.

    Google Scholar 

  • Dixon, R. O. D., and Wheeler, C. T. (1986). Nitrogen fixation in plants. New York, NY: Chapman and Hall.

    Google Scholar 

  • Dommergues, Y. R. (1997). Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol. Biochem., 29, 931–941.

    CAS  Google Scholar 

  • Dow, M. A., and Schwintzer, C. R. (1999). Seed germination, seedling emergence, and seed bank ecology of sweet-fern (Comptonia peregrina (L.) Coult.). Can. J. Bot., 77, 1378–1386.

    Google Scholar 

  • El-Lakany, M. H., and Luard, J. E. (1982). Comparative salt tolerance of selected Casuarina species. Austr. Forest Res., 13, 11–20.

    Google Scholar 

  • Faure-Raynaud, M., Bonnefoy-Poirier, M. A., and Moiroud, A. (1986). Influence de pH acides sur la viabilité d’isolats de Frankia. Plant Soil, 96, 347–358.

    CAS  Google Scholar 

  • Friedrich, J. M., and Dawson, J. O. (1984). Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robinia species. Can. J. Forest Res., 14, 864–868.

    Google Scholar 

  • Gauthier, D., Jaffre, T., and Prin, Y. (2000). Abundance of Frankia from Gymnostomaspp.in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur. J. Soil Biol., 36, 169–175.

    Google Scholar 

  • Girgis, M. G. Z., and Schwencke, J. (1993). Differentiation of Frankia by their electrophoretic patterns of intracellular esterases and aminopeptidases. J. Gen. Microbiol., 139, 2225-2232.

    CAS  Google Scholar 

  • Goldman, C. R. (1961). The contribution of alder trees (Alnus tenuifolia) to the primary productivity of Castle Lake, California. Ecol., 42, 282–288.

    Google Scholar 

  • Gordon, J. C., and Dawson, J. O. (1979). Potential uses of nitrogen-fixing trees and shrubs in commercial forestry. Bot. Gaz., 140, 88–90.

    Google Scholar 

  • Gordon, J. C., and Wheeler, C. T. (1978). Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol., 80, 179–186.

    CAS  Google Scholar 

  • Griffiths, A. P., and McCormick, L. H. (1984). Effects of soil acidity on nodulation of Alnus glutinosa and viability of Frankia. Plant Soil, 79, 429–434.

    CAS  Google Scholar 

  • Haansu, J. P., Klika, K. D., Söderholm, P. P., Ovcharenko, V. V., Pihlaja, K., et al. (2001). Isolation and biological activity of frankiamide. J. Ind. Microbiol. Biotechnol., 27, 62–66.

    Google Scholar 

  • Hahn, D., Nickel, A., and Dawson, J. O. (1999). Assessing Frankia populations in plants and soil using molecular methods. FEMS Microbiol. Ecol., 29, 215–227.

    CAS  Google Scholar 

  • Harborne, J. (1973). Phytochemical methods. London, UK: Chapman and Hall.

    Google Scholar 

  • Harriott, O. T., and Bourret, A. (2003). Improving dispersed growth of Frankia using Carbopol. Plant Soil, 254, 69–74.

    CAS  Google Scholar 

  • Hasebe, M., Kofuji, R., Shindo, S., Hiwatashi, Y., Kobayashi-Arakawa, S., et al. (1998). Division of speciation mechanisms II: Annual report 1998. Japanese National Institute for Basic Biology. Retrieved October 10, 2003 from http://www.nibb.ac.jp/annual_report/1998/24.html.

    Google Scholar 

  • Haukioja, E. (1991). Cyclic fluctuations in density: Interactions between a defoliator and its host tree. Acta Oecol., 12, 77–88.

    Google Scholar 

  • Hensley, D. L., and Carpenter, P. L. (1984). Effect of lime additions to acid strip-mine spoil on survival, growth and nitrogen fixation (acetylene reduction) of several woody legume and actinomycete-nodulated species. Plant Soil, 79, 353–367.

    CAS  Google Scholar 

  • Hensley, D. L., and Carpenter, P. L. (1987). The effect of cadmium on growth and acetylene reduction (N2 fixation) by Alnus glutinosa. Hort. Science, 22, 69–70.

    CAS  Google Scholar 

  • Hewitt, E. J., and Bond, G. (1961). Molybdenum and the fixation of nitrogen in Casuarinaand Alnus root nodules. Plant Soil, 14, 159–175.

    CAS  Google Scholar 

  • Hibbs, D. E., and Cromack, Jr., K. (1990). Actinorhizal plants in Pacific Northwest forests. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 343-363). New York, NY: Academic Press.

    Google Scholar 

  • Hibbs, D. E., DeBell, D. S., and Tarrant, R. F. (Eds.) (1994). The biology and management of red alder. Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Huguet, V. (2003). Spécificité d’association du couple symbiotique Frankia/Myrica (n>Ph.D. thesis, Université Claude Bernard Lyon I, France).

    Google Scholar 

  • Huguet, V., Batzli, J. M., Zimpfer, J. F., Normand, P., Dawson, J. O., and Fernandez, M. P. (2001). Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol., 67, 2116-2122.

    PubMed  CAS  Google Scholar 

  • Huss-Danell, K. (1990). The physiology of actinorhizal nodules. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 129-156). New York, NY: Academic Press.

    Google Scholar 

  • Huss-Danell, K. (1997). Actinorhizal plants and their N2 fixation. New Phytol., 136, 375–405.

    CAS  Google Scholar 

  • Huss-Danell, K., and Frej, A. (1986). Distribution of Frankia in soils from forests and afforestation sites in northern Sweden. Plant Soil, 90, 407–418.

    Google Scholar 

  • Huss-Danell, K., Uliassi, D., and Renberg, I. (1997). River and lake sediments as sources of infective Frankia (Alnus). Plant Soil, 197, 35–39.

    CAS  Google Scholar 

  • Igual, J. M., and Dawson, J. O. (1999). Stimulatory effects of aluminum on in vitro growth of Frankia. Can. J. Bot., 77, 1321–1326.

    CAS  Google Scholar 

  • Igual, J. M., Rodríguez-Barrueco, C., and Cervantes, E. (1997). The effects of aluminum on nodulation and symbiotic nitrogen fixation in Casuarina cunninghamiana Miq. Plant Soil, 190, 41–46.

    CAS  Google Scholar 

  • Ingsted, T. (1980). Growth, nutrition and nitrogen fixation in grey alder at varied rate of nitrogen addition. Physiol. Plant., 50, 353–364.

    Google Scholar 

  • Jeong, S. C., and Myrold, D. D. (2001). Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol. Biochem., 33, 931- 941.

    CAS  Google Scholar 

  • Kaelke, C. M., and Dawson, J. O. (2003). Seasonal flooding regimes influence survival, nitrogen fixation, and the partitioning of nitrogen and biomass in Alnus incana ssp. rugosa. Plant Soil, 254, 167–177.

    CAS  Google Scholar 

  • Kapulnik, Y., Joseph, C. M., and Phillips, D. A. (1987). Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol., 84, 1193–1196.

    PubMed  CAS  Google Scholar 

  • Keeley, S. C. (1989). The California chaparral: Paradigms reexamined. Natural History Museum of Los Angeles County, CA, Science Series Number 34.

    Google Scholar 

  • Knowlton, S., Berry, A., and Torrey, J. G. (1980). Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can. J. Microbiol., 26, 971–977.

    PubMed  CAS  Google Scholar 

  • Knowlton, S., and Dawson, J. O. (1983). Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubraroots by Frankia. Can. J. Bot., 61, 2877–2882.

    Google Scholar 

  • Kohls, S. J., Baker, D. D., van Kessel, C., and Dawson, J. O. (2003). An assessment of soil enrichment by actinorhizal N2fixation using δ 15N values in a chronosequence of deglaciation at Glacier Bay, Alaska. Plant Soil, 254, 11–17.

    CAS  Google Scholar 

  • Kohls, S. J., Thimmapuram, J., Bushena, C. A., Paschke, M. W., and Dawson, J. O. (1994). Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant Soil, 162, 229-239.

    Google Scholar 

  • Krajick, K. (1998). Green farming by the Incas? Science, 281, 323.

    CAS  Google Scholar 

  • Krueger, K. W., and Ruth, R. H. (1968). Photosynthesis of red alder, Douglas-fir, Sitka spruce, and western hemlock seedlings. In Biology of alder: Proceedings of a symposium; 1967 April 14-15. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.

    Google Scholar 

  • Krumholz, G. D., Chval, M. S., McBride, M. J., and Tisa, L. S. (2003). Germination and physiological properties of Frankia spores. In P. Normand, K. Pawlowski, and J. O. Dawson (Eds.), Frankia symbiosis (pp. 57-68). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lai, Chia-Chin. (1996). The effect of tyrosine on pigmentation, growth, and infectivity of Frankia (M.Sc. thesis, University of Illinois at Urbana-Champaign).

    Google Scholar 

  • Laplaze, L., Gherbi, H., Frutz, T., Pawlowski, K., Franche, C., et al. (1999). Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol., 121, 113-122.

    PubMed  CAS  Google Scholar 

  • Lawrence, D. B., Schoenike, R. E., Quispel, A., and Bond, G. (1967). The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J. Ecol., 55, 793-813.

    Google Scholar 

  • Lawrie, A. C. (1982). Field nodulation in nine species of Casuarina in Victoria. Aust. J. Bot., 30, 447-460.

    Google Scholar 

  • Lechevalier, M. P., and Lechevalier, H. A. (1990). Systematics, isolation, and culture ofFrankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 35-60). New York, NY: Academic Press.

    Google Scholar 

  • Li, C. Y., Lu, K., Trappe, J., and Bollen, W. (1970). Separation of phenolic compounds in alkali hydrolysates of forest soil by thin-layer chromatography. Can. J. Soil Sci., 50, 458-460.

    CAS  Google Scholar 

  • Li, C. Y., Trappe, J. M., and Bollen, W. B. (1972). Poria weirii-inhibiting and other phenolic compounds in roots of red alder and Douglas fir.Microbios, 5, 65-68.

    PubMed  CAS  Google Scholar 

  • Lopez, M. F., Fontaine, M. S., and Torrey, J. G. (1984). Levels of trehalose and glycogen in Frankia sp. HFPArl3 (Actinomycetates). Can. J. Microbiol., 30, 746-752.

    CAS  Google Scholar 

  • Maggia, L., and Bousquet, J. (1994). Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Mol. Ecol., 3, 459-467.

    Google Scholar 

  • Martin, A. C., Zim, H. S., and Nelson, A. L. (1961). American wildlife & plants: A guide to wildlife food habitats. New York, NY: Dover Publications.

    Google Scholar 

  • Martin, K. J., Posavatz, N. J., and Myrold, D. D. (2003). Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil, 254, 187-192.

    CAS  Google Scholar 

  • Martin, R. B. (1988). Bioinorganic chemistry of aluminum. In H. Sigel and A. Sigel (Eds.), Metal ions in biological systems: Aluminumandits role in biology (pp. 1-57). New York, NY: Marcel Dekker.

    Google Scholar 

  • Maunuksela, L., Hahn, D., and Haahtela, K. (2000). Effect of freezing of soils on nodulation capacities of total and specific Frankia populations. Symbiosis, 29, 107-120.

    Google Scholar 

  • Maunuksela, L. Zepp, K., Koivula, T., Zeyer, J., Haahtela, K., and Hahn, D. (1999). Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol. Ecol., 28, 11-21.

    CAS  Google Scholar 

  • McIlveen, W. D., and Cole, H. (1976). Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can. J. Bot., 54, 1486-1489.

    Google Scholar 

  • McKey, D. (1994). Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In J. I. Sprent and D. McKey (Eds.), Advances in legume systematics: Part 5 - the nitrogen factor (pp. 211-228). Kew, UK: Royal Botanic Gardens.

    Google Scholar 

  • McNabb, D. H., and Cromack, K. (1985). Dinitrogen fixation by a mature Ceanothus velutinus (Dougl.) stand in the Western Oregon Cascades. Can. J. Bot., 29, 1014-1021.

    Google Scholar 

  • McVean, D. N. (1956). Ecology of Alnus glutinosa (L.) Gaertn. III. Seedling establishment. J. Ecol., 44, 195-218.

    Google Scholar 

  • Mejstrik, V., and Benecke, U. (1969). The ectotrophic mycorrhizas of Alnus viridis (Chaix) DC and their significance in respect to phosphorous uptake. New Phytol., 68, 141-149.

    Google Scholar 

  • Midgley, S. J., Turnbull, J. W., and Johnson, R. D. (1983). Casuarinaecology, management and utilization. Melbourne, Austrralia: CSIRO.

    Google Scholar 

  • Müller, A., Benoit, P., Diem, H. G., and Schwencke, J. (1991). Age-dependent changes in extracellular protein, aminopeptidase activities in Frankia. J. Gen. Microbiol., 137, 2787-2796.

    PubMed  Google Scholar 

  • Murai, S. (1964). Phytotaxonomical and geobotanical studies on genus Alnus in Japan (III).Taxonomy of whole world species and distribution of each section. Bull. Gov. Forest Exp. Sta.(Tokyo, Japan), 171, 1-107.

    Google Scholar 

  • Myrold, D. D., and Huss-Danell, K. (1994). Population dynamics of Alnus-infective Frankia in a forest soil with and without host trees. Soil Biol. Biochem., 26, 533-540.

    Google Scholar 

  • Navarro, E., Bousquet, J., Moiroud, A., Munive, A., Piou, D., and Normand, P. (2003). Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant Soil, 254, 207-217.

    CAS  Google Scholar 

  • Navarro, E., Nalin, R., Gauthier, D., and Normand, P. (1997). The nodular microsymbionts of Gymnostoma spp. are Elaeagnus-infective Frankiastrains. Appl. Environ. Microbiol., 63, 1610-1616.

    PubMed  CAS  Google Scholar 

  • Neave, I. A., and Dawson, J. O. (1989). Juglone reduces growth, nitrogenase activity, and root respiration of actinorhizal black alder seedlings. J. Chem. Ecol., 15, 1823-1836.

    CAS  Google Scholar 

  • Neave, I. A., Dawson, J. O., and DeLucia, E. H. (1989). Autumnal photosynthesis is extended in nitrogen-fixing European black alder compared with white basswood: Possible adaptive significance. Can. J. Forest Res., 19, 12-17.

    Google Scholar 

  • Nickel, A. (2000). Population dynamics of Frankia in soil (Ph.D. thesis, Swiss Technical University (ETH), Zürich, Switzerland).

    Google Scholar 

  • Nickel, A., Hahn, D., Zepp, K., and Zeyer, J. (1999). In situ analysis of introduced Frankia populations in root nodules obtained on Alnus glutinosa grown under different water availability. Can. J. Bot., 77, 1231-1238.

    Google Scholar 

  • Oremus, P. A. I. (1980). Occurrence and infective potential of the endophyte of Hippophaë rhamnoidesL. ssp. rhamnoides in coastal sand dune areas. Plant Soil, 56, 123-139.

    CAS  Google Scholar 

  • Paschke, M. W. (1997). Actinorhizal plants in rangelands of the western United States. J. Range Manage., 50, 62-72.

    Google Scholar 

  • Paschke, M. W., and Dawson, J. O. (1992a). The occurrence of Frankia in tropical forest soils of Costa Rica. Plant Soil, 142, 63-67.

    Google Scholar 

  • Paschke, M. W., and Dawson, J. O. (1992b). Frankia abundance in soils beneath Betual nigra and other non-actinorhizal woody plants. Acta Oecol., 13, 407-415.

    Google Scholar 

  • Paschke, M. W., and Dawson, J. O. (1993). Avian dispersal of Frankia. Can. J. Bot., 71, 1128-1131.

    Google Scholar 

  • Paschke, M. W., Dawson, J. O., and Condon, B.M. (1994). Frankia in prairie, forest, and cultivated soils of central Illinois, U.S.A. Pedobiologia, 38, 546-551.

    Google Scholar 

  • Paschke, M. W., Dawson, J. O., and David, M. B. (1989). Soil nitrogen mineralization in mixed plantations of black walnut with actinorhizal autumn olive or black alder. Plant Soil, 118, 33-42.

    Google Scholar 

  • Perradin, Y., Mottet, M., and LaLonde, M. (1983). Influence of phenolics on in vitro growth of Frankia strains. Can. J. Bot., 61, 2807-2814.

    CAS  Google Scholar 

  • Prin, Y., and Rougier, M. (1987). Preinfection events in the establishment of the Alnus-Frankia symbiosis: Study of the root hair deformation step. Plant Physiol., 6, 99-106.

    Google Scholar 

  • Reddell, P., Bowen, G. D., and Robson, A. D. (1985). The effects of soil temperature on plant growth, nodulation and nitrogen fixation in Casuarina cunninghamiana. Miq. New Phytol., 101, 441-450.

    CAS  Google Scholar 

  • Reddell, P., Rosbrook, P. A., Bowen, G. D., and Gwaze, D. (1988). Growth responses in Casuarina cunninghamiana plantings to inoculation with Frankia. Plant Soil, 108, 79-86.

    Google Scholar 

  • Reddell, P., and Spain, A. V. (1991). Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem., 23, 767-774.

    Google Scholar 

  • Richards, J. W., Krumholz, G. D., Chval, M. S., and Tisa, L. S. (2002). Heavy metal resistance patterns of Frankia strains. Appl. Environ. Microbiol., 68, 923-927.

    PubMed  CAS  Google Scholar 

  • Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., and Rejmanek, M. (2000). Plant invasions - the role of mutualisms. Biol. Rev., 75, 65-93.

    PubMed  CAS  Google Scholar 

  • Righetti, T. L., Chard, C. H., and Backhause, R. A. (1986). Soil and environmental factors related to nodulation in Cowaniaand Purshia. Plant Soil, 91, 147-160.

    Google Scholar 

  • Righetti, T. L., and Munns, D. N. (1981). Soil factors limiting nodulation and nitrogen fixation in Purshia. In J. M. Lyons, R. C. Valentine, D. A. Phillips, D. W. Rains, and R. C. Huffaker (Eds.), Genetic engineering of symbiotic nitrogen fixationandconservation of fixed nitrogen (pp. 395-407). New York, NY: Plenum Press.

    Google Scholar 

  • Roberts, N. (1998). The Holocene: An environmental history (Second Edition). Oxford, UK: Blackwell.

    Google Scholar 

  • Rodriguez-Barrueco, C. (1968). The occurrence of the root nodule endophytes of Alnus glutinosa and Myrica gale in soils. J. Gen. Microbiol., 52, 189-194.

    Google Scholar 

  • Rodriguez-Barrueco, C., Mackintosh, A. H., and Bond, G. (1970). Some effects of combined nitrogen on the nodule symbioses of Casuarina and Ceanothus. Plant Soil, 33, 129-139.

    Google Scholar 

  • Rösch, D., Bergmann, M., Knorr, D., and Kroh, L. W. (2003). Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agr. Food Chem., 51, 4233-4239.

    Google Scholar 

  • Rose, S. L., and Youngberg, C. T. (1981). Tripartite association of snowbrush (Ceanothus velutinus): Effect of vesicular-arbuscular mycorrhizae on growth nodulation and nitrogen fixation. Can. J. Bot., 59, 34-39.

    CAS  Google Scholar 

  • Safo-Sampath, S., and Torrey, J. G. (1988). Polysaccharide-hydrolysing enzymes of Frankia (Actinomycetales). Plant Soil, 112, 89-97.

    Google Scholar 

  • Seguin, A., and Lalonde, M. (1989). Detection of pectolytic activity and pel homologous sequences in Frankia. Plant Soil, 118, 221-229.

    CAS  Google Scholar 

  • Schramm, J. R. (1966). Plant colonization studies on black wastes from anthracite mining in Pennsylvania. T. Am. Philos. Soc., 56, 1-194.

    Google Scholar 

  • Schwencke, J., and Carú, M. (2001). Advances in actinorhizal symbiosis: Host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res. Manag., 15, 285-327.

    CAS  Google Scholar 

  • Schwintzer, C. R., Berry, A. M., and Disney, L. D. (1982). Seasonal pattern of root nodule growth, endophyte morphology, nitrogen activity and shoot development in Myrica gale. Can. J. Bot., 60, 746-757.

    Google Scholar 

  • Seiler, J. R., and Johnson, J. D. (1984). Growth and acetylene reduction of black alder seedlings in response to water stress. Can. J. Forest Res., 14, 477-480.

    CAS  Google Scholar 

  • Selim, S., Delacour, S., and Schwencke, J. (1996). Specific long-chain fatty acids promote optimal growth of Frankia: Accumulation and intracellular distribution of palmitic and propionic acid. Arch. Microbiol., 165, 252-257.

    PubMed  CAS  Google Scholar 

  • Shindo, H., Ohta, S., and Kuwatsuka, S. (1978). Behavior of phenolic substances in the decaying process of plants. IX. Distribution of phenolic acids in soils of rice paddy fields and forests. Soil Sci. Plant Nutr., 24, 233-243.

    CAS  Google Scholar 

  • Silvester, W. B. (1977). Dinitrogen fixation by plant associations excluding legumes. In R. Hardy and W. Silvester (Eds.), A treatise of dinitrogen fixation(Vol. 4, pp. 141-190). New York, NY: Academic Press.

    Google Scholar 

  • Silvester, W. B., and Harris, S. L. (1990). Oxygen regulation and hemoglobin. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 157-176). New York, NY: Academic Press.

    Google Scholar 

  • Silvester, W. B., Whitbeck, J., Silvester, J. K., and Torrey, J. G. (1988a). Growth, nodule morphology, and nitrogenase activity of Myrica galewith roots grown at various oxygen levels. Can. J. Bot., 66, 1762-1771.

    Google Scholar 

  • Silvester, W. B., Silvester, J. K., and Torrey, J. G. (1988b). Adaptation of nitrogenase to varying oxygen tension in root nodules of Alnus incana ssp. rugosa. Can. J. Bot., 66, 1772-1779.

    Google Scholar 

  • Simonet, P., Navarro, E., Rouvier, C., Reddell, P., Zimpfer, J., et al. (1999). Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Env. Microbiol., 1, 525-533.

    CAS  Google Scholar 

  • Smolander, A. (1990). Frankia populations under different tree species - with a special emphasis on soils under Betula pendula. Plant Soil, 121, 1-10.

    Google Scholar 

  • Smolander, A., Rönkkö, R., Nurmiaho-Lassila, E.-L., and Haahtela, K. (1990). Growth of Frankia in the rhizosphere of Betula pendula, a nonhost tree species. Can. J. Microbiol., 36, 649-656.

    Google Scholar 

  • Smolander, A., and Sundman, V. (1987). Frankia in acid soils of forests devoid of actinorhizal plants. Physiol. Plant., 70, 297-303.

    Google Scholar 

  • Smolander, A., van Dijk, C., and Sundman, V. (1988). Survival of Frankia strains introduced into soil. Plant Soil, 106, 65-72.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., et al. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. U.S.A., 92, 2647-2651.

    PubMed  CAS  Google Scholar 

  • Su, H., and Lin, L.-P. (1989). The dissemination of endophytes and existence of endomycorrhiza on the rhizoplane of Alnus formosana. J. Chin. Agric. Chem. Soc., 27, 513-523.

    Google Scholar 

  • Subbarao, N. S., and Rodríguez-Barrueco, C. (1995). Casuarinas. Lebanon, NH: Science Publishers.

    Google Scholar 

  • Sundström, K.-R., and Huss-Danell, K. (1987). Effects of water stress on nitrogenase activity in Alnus incana. Physiol. Plant., 70, 342-348.

    Google Scholar 

  • Swensen, S. M. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Am. J. Bot., 83, 1503-1512.

    Google Scholar 

  • Thompson, V. (1994). Spittlebug indicators of nitrogen-fixing plants. Ecol. Entomol., 19, 391-398.

    Google Scholar 

  • Thompson, V. (1999). Spittlebugs associated with actinorhizal host plants. Can. J. Bot., 77, 1387-1390.

    Google Scholar 

  • Tilman, D., Wedin, D., and Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718.

    CAS  Google Scholar 

  • Tjepkema, J. (1978). The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale. Can. J. Bot., 56, 1365-1371.

    CAS  Google Scholar 

  • Torrey, J. G. (1990). Cross-inoculation groups within Frankia and host-endosymbiont associations. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 83-106). New York, NY: Academic Press.

    Google Scholar 

  • Tortosa, R. D., and Cusato, M. (1991). Effective nodulation of rhamnaceous actinorhizal plants induced by air dry soils. Plant Soil, 131, 229-233.

    Google Scholar 

  • van Dijk, C. (1979). Endophyte distribution in the soil. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 84-94). Corvalis, OR: Oregon State University Press.

    Google Scholar 

  • van Dijk, C., and Sluimer-Stolk, A. (1990). An ineffective strain type of Frankia in the soil of natural stands of Alnus glutinosa (L.) Gaertn. Plant Soil, 127, 107-121.

    Google Scholar 

  • Van Ghelue, M., Lovaas, E., Ringo, E., and Solheim, B. (1997). Early interactions between Alnus glutinosa and Frankia strain ArI3: Production and specificity of root hair deformation factor(s). Physiol. Plant., 99, 579-587.

    Google Scholar 

  • Van Miegroet, H., and Cole, D. W. (1985). Acidification sources in red alder and Douglas-fir soils: Importance of nitrification. Soil Sci. Soc. Am. J., 49, 1274- 1279.

    Google Scholar 

  • Vergnaud, L., Chaboud, A., Prin, Y., and Rougier, M. (1985). Preinfection events in the establishment of Alnus-Frankia symbiosis: Development of a spot inoculation technique. Plant Soil, 87, 67-68.

    Google Scholar 

  • Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., et al. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57/58, 1-45.

    CAS  Google Scholar 

  • Vitousek, P. M., and Walker, L. R. (1989). Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, and ecosystem effects. Ecol. Monogr., 59, 247-265.

    Google Scholar 

  • Vogel, C. S., and Curtis, P. S. (1995). Leaf gas and nitrogen dynamics of N2-fixing field-grown Alnus glutinosa under elevated atmospheric CO2. Glob. Change Biol., 1, 55-61.

    Google Scholar 

  • Vogel, C., and Dawson, J. O. (1986). In vitro growth of five Frankia isolates in the presence of four phenolic acids. Soil Biol. Biochem., 18, 227-231.

    CAS  Google Scholar 

  • Walker, L. R. (1993). Nitrogen fixers and species replacements in primary succession. In J. Miles and D. W. H. Walton (Eds.), Primary succession on land (pp. 249-272). London, UK: Blackwell Scientific.

    Google Scholar 

  • Wheeler, C. T., and Bowes, B. G. (1974). Effects of light and darkness on nitrogen fixation by root nodules of Alnus glutinosa in relation to their cytology. Z. Pflanzenphysiol., 71, 71-75.

    Google Scholar 

  • Wheeler, C. T., Henson, I. E., and McLaughlin, M. E. (1979). Hormones in plants bearing actinomycete nodules. Bot. Gaz. (Chicago), Suppl., 140, S52-S57.

    Google Scholar 

  • Wheeler, C. T., Hughes, L. T., Oldroyd, J., and Pulford, I. D. (2001). Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L) Gaertn. Plant Soil, 231, 81-90.

    CAS  Google Scholar 

  • Wheeler, C. T., and Miller, I. M. (1990). Current and potential uses of actinorhizal plants in Europe. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 365-389). New York, NY: Academic Press.

    Google Scholar 

  • Wheeler, C. T., Watts, S. H., and Hillman, J. R. (1983). Changes in carbohydrates and nitrogenase compounds in the root nodules of Alnus glutinosa in relation to dormancy. New Phytol., 95, 209-218.

    CAS  Google Scholar 

  • Whitehead, D. (1964). Identification of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acid in soils. Nature, 202, 417-419.

    PubMed  CAS  Google Scholar 

  • Whitehead, D., Dibb, H., and Hartley, R. (1983). Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem., 15, 133-136.

    CAS  Google Scholar 

  • Wollum, C. T., and Youngberg, A. G. (1969). Effect of soil temperatures on nodulation of Ceanothus velutinus Dougl. Proc. Soil Sci. Soc. of America, 33, 801-803.

    Google Scholar 

  • Wollum, C. T., Youngberg, A. G., and Chichester, F. W. (1968). Relation of previous timber stand age to nodulation of Ceanothus velutinus. Forest Sci., 14, 114-118.

    Google Scholar 

  • Wolters, D. J., Akkermans, A. D. L., and Van Dijk, C. (1997). Ineffective Frankia strains in wet stands of Alnus glutinosa L. Gaertn. in the Netherlands. Soil Biol. Biochem., 29, 1702-1712.

    Google Scholar 

  • Yadav, J. S. P. (1983). Soil limitations for successful establishment and growth of Casuarina plantations. In S. J. Midgley, J. W. Turnbull, and R. D. Johnston (Eds.), Casuarina ecology, managementandutilization (pp. 138-157). Melbourne, Austrralia: CSIRO.

    Google Scholar 

  • Yamanaka, T., Li, C.-Y., Bormann, B. T., and Okabe, H. (2003). Tripartite associations in alder: Effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil, 254, 179-186.

    CAS  Google Scholar 

  • Young, D. R., Sande, E., and Perters, G. A. (1992). Spatial relationships of Frankia and Myrica cerifera on a Virginia, U.S.A., barrier island. Symbiosis, 112, 209-220.

    Google Scholar 

  • Zhang, X., and Benson, D. R. (1992). Utilization of amino acids by Frankia strain CpI1. Arch. Microbiol., 158, 256-261.

    CAS  Google Scholar 

  • Zimpfer, J. F., Kaelke, C. M., Smyth, C. A., Hahn, D., and Dawson, J. O. (2003). Frankiainoculation, soil biota, and host tissue amendment influence Casuarina nodulation capacity of a tropical soil. Plant Soil, 254, 1-10.

    CAS  Google Scholar 

  • Zimpfer, J. F., Kennedy, G. J., Smyth, C. A., Hamelin, J., Navarro, E., and Dawson, J. O. (1999). Localization of Casuarina-infective Frankia near Casuarina cunninghamiana trees in Jamaica. Can. J. Bot., 77, 1248-1256.

    Google Scholar 

  • Zimpfer, J. F., McCarty, B., Kaelke, C. M., Mulongwe, L., Igual, J. M., Smyth, C. A., and Dawson, J. O. (2002). Casuarina cunninghamiana cladode extracts increase the Frankia infectious capacity of a tropical soil. Symbiosis, 33, 73-90.

    Google Scholar 

  • Zimpfer, J. F., Smyth, C. A., and Dawson, J. O. (1997). The capacity of Jamaican mine spoils, agricultural and forest soils to nodulate Myrica cerifera, Leucaena leucocephala and Casuarina cunninghamiana. Physiol. Plant., 99, 664-672.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dawson, J.O. (2007). Ecology Of Actinorhizal Plants. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_8

Download citation

Publish with us

Policies and ethics