Skip to main content

Cytochrome P450 Gene Regulation: Reporter Assays to Assess Aryl Hydrocarbon Receptor (HLHE76, AhR) Activation and Antagonism

  • Protocol
  • First Online:
Cytochrome P450

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1028 Accesses

Abstract

Many xenobiotics, including environmental contaminants such as polycyclic aromatic hydrocarbons, dietary substances such as flavonoids, and therapeutic agents such as omeprazole, have the ability to activate the aryl hydrocarbon receptor (AhR, HLHE76). Identifying agents with this capability has not only been a focus for toxicologists/environmentalists but also for pharmaceutical companies. In the pharmaceutical arena, screening for new molecular entities that activate AhR is applicable for two reasons. First, it can predict drug–drug interactions (DDIs) associated with increased expression of specific drug metabolizing enzymes and transporters. Second, AhR can be an effective target for the development of therapeutic agents, particularly those that antagonize the receptor. Several in vitro techniques can be employed to screen for AhR activation, but some of the most effective are the cell-based transactivation assays. These in vitro assays have several advantages: activation of a species-specific nuclear receptor (NR) can be detected, there is a high degree of reproducibility between experiments, they are cost- and time-efficient, and are amenable to either medium or high throughput screening. The technique described here involves the assessment of human, monkey, rat, murine, and canine AhR activation in species-specific cell lines that express the endogenous receptor. Moreover, methods for identifying antagonists of the AhR are described. The cell lines containing AhR from various species are stably transformed with the reporter luciferase linked to dioxin response elements (DREs) and a promoter from the CYP1A2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MC:

3-Methylcholanthrene

AhR:

Aryl hydrocarbon receptor

CTF:

Cell-Titer Fluor™ cell viability assay

DDIs:

Drug–drug interactions

DMSO:

Dimethyl sulfoxide

DREs:

Dioxin response elements

FBS:

Fetal bovine serum

FLU:

Fluorescent light units

NR:

Nuclear receptor

PAHs:

Polycyclic aromatic hydrocarbons

PBS:

Phosphate buffered saline

RLU:

Relative light units

TCDD:

2,3,7,8-Tetrachlorodibenzodioxin

References

  1. Schrenk D (1998) Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics. Biochem Pharmacol 55:1155–1162

    Article  CAS  Google Scholar 

  2. Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O (1995) Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem 270:29270–29278

    Article  CAS  Google Scholar 

  3. Probst MR, Reisz-Porszasz S, Agbunag RV, Ong MS, Hankinson O (1993) Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Mol Pharmacol 44:511–518

    CAS  PubMed  Google Scholar 

  4. Denison MS, Fisher JM, Whitlock JP Jr (1988) The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem 263:17221–17224

    Article  CAS  Google Scholar 

  5. Denison MS, Fisher JM, Whitlock JP Jr (1988) Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc Natl Acad Sci U S A 85:2528–2532

    Article  CAS  Google Scholar 

  6. Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347:321–337

    Article  CAS  Google Scholar 

  7. Mimura J, Fujii-Kuriyama Y (2003) Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619:263–268

    Article  CAS  Google Scholar 

  8. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22

    Article  CAS  Google Scholar 

  9. Woods CG, Heuvel JP, Rusyn I (2007) Genomic profiling in nuclear receptor-mediated toxicity. Toxicol Pathol 35:474–494

    Article  CAS  Google Scholar 

  10. Daujat M, Peryt B, Lesca P, Fourtanier G, Domergue J, Maurel P (1992) Omeprazole, an inducer of human CYP1A1 and 1A2, is not a ligand for the Ah receptor. Biochem Biophys Res Commun 188:820–825

    Article  CAS  Google Scholar 

  11. Fuhr U, Woodcock BG, Siewert M (1992) Verapamil and drug metabolism by the cytochrome P450 isoform CYP1A2. Eur J Clin Pharmacol 42:463–464

    CAS  PubMed  Google Scholar 

  12. Gu L, Gonzalez FJ, Kalow W, Tang BK (1992) Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 2:73–77

    Article  CAS  Google Scholar 

  13. Lemoine A, Gautier JC, Azoulay D, Kiffel L, Belloc C, Guengerich FP, Maurel P, Beaune P, Leroux JP (1993) Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 43:827–832

    CAS  PubMed  Google Scholar 

  14. Bradfield CA, Bjeldanes LF (1987) Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J Toxicol Environ Health 21:311–323

    Article  CAS  Google Scholar 

  15. Ciolino HP, Daschner PJ, Wang TT, Yeh GC (1998) Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56:197–206

    Article  CAS  Google Scholar 

  16. Ciolino HP, Daschner PJ, Yeh GC (1999) Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 340(Pt 3):715–722

    Article  CAS  Google Scholar 

  17. Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS (1998) Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37:11508–11515

    Article  CAS  Google Scholar 

  18. Linden J, Lensu S, Tuomisto J, Pohjanvirta R (2010) Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 31:452–478

    Article  CAS  Google Scholar 

  19. McMillan BJ, Bradfield CA (2007) The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol Pharmacol 72:487–498

    Article  CAS  Google Scholar 

  20. Vondracek J, Umannova L, Machala M (2011) Interactions of the aryl hydrocarbon receptor with inflammatory mediators: beyond CYP1A regulation. Curr Drug Metab 12:89–103

    Article  CAS  Google Scholar 

  21. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Article  CAS  Google Scholar 

  22. Monteleone I, MacDonald TT, Pallone F, Monteleone G (2012) The aryl hydrocarbon receptor in inflammatory bowel disease: linking the environment to disease pathogenesis. Curr Opin Gastroenterol 28:310–313

    Article  CAS  Google Scholar 

  23. Lawrence BP, Denison MS, Novak H, Vorderstrasse BA, Harrer N, Neruda W, Reichel C, Woisetschlager M (2008) Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood 112:1158–1165

    Article  CAS  Google Scholar 

  24. Pinne M, Raucy JL (2014) Advantages of cell-based high-volume screening assays to assess nuclear receptor activation during drug discovery. Expert Opin Drug Discovery 9:669–686

    Article  CAS  Google Scholar 

  25. Allen SW, Mueller L, Williams SN, Quattrochi LC, Raucy J (2001) The use of a high-volume screening procedure to assess the effects of dietary flavonoids on human cyp1a1 expression. Drug Metab Dispos 29:1074–1079

    CAS  PubMed  Google Scholar 

  26. Yueh MF, Kawahara M, Raucy J (2005) Cell-based high-throughput bioassays to assess induction and inhibition of CYP1A enzymes. Toxicol in Vitro 19:275–287

    Article  CAS  Google Scholar 

  27. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA, (CDER), Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism/Clinical Pharmacology Technical Working Group; FDA Center for Drug Evaluation and Research (CDER) (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832

    Article  CAS  Google Scholar 

  28. Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp SL, Silva J, Sinha V, Sinz M, Skerjanec A (2009) In vitro and in vivo induction of cytochrome P450: a survey of the current practices and recommendations: a Pharmaceutical Research and Manufacturers of America Perspective. Drug Metab Dispos 37:1339–1354

    Article  CAS  Google Scholar 

  29. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2012). Drug Interaction Studies-Study Design, Data Analysis, Implications for Dosing and Labeling Recommendations. Guidance for Industry, 15–34

    Google Scholar 

  30. Almond LM, Yang J, Jamei M, Tucker GT, Rostami-Hodjegan A (2009) Towards a quantitative framework for the prediction of DDIs arising from cytochrome P450 induction. Curr Drug Metab 10:420–432

    Article  CAS  Google Scholar 

  31. Fahmi O, Ripp S (2010) Evaluation of models for predicting drug-drug interactions due to induction. Exp Opinion Drug Metab Toxicol 6:1399–1416

    Article  CAS  Google Scholar 

  32. Fahmi OA, Hurst S, Plowchalk D, Cook J, Guo F, Youdim K, Dickins M, Phipps A, Darekar ARH, Obach RS (2009) Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos 37:1658–1666

    Article  CAS  Google Scholar 

  33. Fahmi O, Raucy J, Ponce E, Hassanali S, Lasker J (2012) The utility of DPX2 cells for predicting CYP3A induction-mediated drug-drug interactions and associated structure-activity relationships. Drug Metab Dispos 40:2204–2211

    Article  CAS  Google Scholar 

  34. Fahmi OA, Boldt S, Kish M, Obach RS, Tremaine LM (2008) Prediction of drug-drug interactions from in vitro induction data. Drug Metab Dispos 36:1971–1974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Pinne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinne, M., Raucy, J.L. (2021). Cytochrome P450 Gene Regulation: Reporter Assays to Assess Aryl Hydrocarbon Receptor (HLHE76, AhR) Activation and Antagonism. In: Yan, Z., Caldwell, G.W. (eds) Cytochrome P450. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1542-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1542-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1541-6

  • Online ISBN: 978-1-0716-1542-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics