Skip to main content

The Tangled Nature Model of Evolutionary Ecology: An Overview

  • Chapter
Book cover Mathematical Modeling of Biological Systems, Volume II

Summary

We present a review of the Tangled Nature model. The model is developed to focus on the effect of evolution and multiple interactions on ecological and evolutionary observables. The model is individual based and ecological structures, such as species, are emergent quantities. The dynamics consists of a simplistic mutation-prone multiplication in which the probability of producing an offspring is determined by the occupancy in genotype space. The macroscopic long time dynamics is intermittent and exhibits a slow decrease in the macroscopic extinction rate. Ecological quantities such as the species abundance distribution and the species-area relationship compare qualitatively well with observations, as does the relation between interaction and diversity. The effect of correlations between parents and mutants has been studied, as has the effect of a conserved resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P.A.: ‘Adaptive dynamics’ vs. ‘adaptive dynamics’. J. Evol. Biol., 18, 1162–1165 (2005).

    Article  Google Scholar 

  2. Drossel, B.: Biological evolution and statistical physics. Adv. in Phys., 50, 209–295 (2001).

    Article  Google Scholar 

  3. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge CB2 2RU (1982).

    MATH  Google Scholar 

  4. Drossel, B., Higgs, P.G., McKane, A.J.: The influence of predator-prey population dynamics on the long-term evolution of food web structure. J. Theor. Biol., 208, 91–107 (2001).

    Article  Google Scholar 

  5. Caldarelli, G., Higgs, P.G., McKane, A.J.: Modelling coevolution in multispecies communities. J. Theor. Biol., 193, 345–358 (1998).

    Article  Google Scholar 

  6. Thompson, J.N.: The evolution of species interactions. Science, 284, 2116–2118 (1999).

    Article  Google Scholar 

  7. Hammerstein, P.: Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol., 34, 511–532 (1996).

    Article  MATH  Google Scholar 

  8. DeAngelis, D.L., Gross, L.J.: Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman & Hall, New York (1992).

    Google Scholar 

  9. DeAngelis, D.L., Mooij, W.M.: Individual-based modelling of ecological and evolutionary processes. Ann. Rev. of Ecol., Evol., and Sys., 36, 147–168 (2005).

    Article  Google Scholar 

  10. Christensen, K., di Collobiano, S.A., Hall, M., Jensen, H.J.: Tangled nature: A model of evolutionary ecology. J. Theor. Biol., 216, 73–84 (2002).

    Article  Google Scholar 

  11. Anderson, P., Jeldtoft Jensen, H.: Network properties, species abundance and evolution in a model of evolutionary ecology. J. Theor. Biol., 232, 551–558 (2005).

    Article  Google Scholar 

  12. Avogadro di Collobiano, S., Christensen, K., Jensen, H.J.: The tangled nature model as an evolving quasi-species model. J. Phys. A, 36, 883–891 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall, M., Christensen, K., di Collobiano, S.A., Jensen, H.J.: Time-dependent extinction rate and species abundance in a tangled-nature model of biological evolution. Phys. Rev. E, 66, 011904 (2002).

    Article  Google Scholar 

  14. Hubbell, S.: The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ 08540 (2001).

    Google Scholar 

  15. Rikvold, P.A., Zia, R.K.P.: Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics. Phys. Rev. E, 68, 031913 (2003).

    Article  Google Scholar 

  16. Zia, R.K.P., Rikvold, P.A.: Fluctuations and correlations in an individual-based model of evolution. J. Phys. A, 37, 5135–5155 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. Durrett, R., Levin, S.: Spatial models for species-area curves. J. Theor. Biol., 179, 119–127 (1996).

    Article  Google Scholar 

  18. Magurran, A.E., Henderson, P.A.: Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714–716 (2003).

    Article  Google Scholar 

  19. Lawson, D., Jensen, H.J.: The species-area relationship and evolution. arXiv:q-bio.PE, 0412024 (2005).

    Google Scholar 

  20. Lawson, D., Jensen, H.J., Kaneko, K.: Diversity as a product of interspecial interactions. arXiv:q-bio.PE, 0505019 (2005).

    Google Scholar 

  21. Sevim, V., Rikvold, P.A.: Effects of correlated interactions in a biological coevolution model with individual-based dynamics. arXiv:q-bio.PE, 0507040 (2005).

    Google Scholar 

  22. Laird, S., Jensen, H.J.: The tangled nature model with inheritance and constraint: Evolutionary ecology restricted by a conserved resource. arXiv:q-bio.PE, 0510008 (2005).

    Google Scholar 

  23. Standish, R.K.: Ecolab: where to now? Complexity International, 3, (1996). (See http:// parallel.hpc.unsw.edu.au/rks/docs/newman-model/newman-model.html for a plot of the full lifetime distribution.)

    Google Scholar 

  24. Chowdhury, D., Stauffer, D., Kunwar, A.: Unification of small and large time scales for biological evolution: deviations from power law. Phys. Rev. Lett., 90, 068101 (2003).

    Article  Google Scholar 

  25. Chowdhury, D., Stauffer, D.: Food web based unified model of macro- and microevolution. Phys. Rev. E, 68, 041901 (2003).

    Article  Google Scholar 

  26. Chowdhury, D., Stauffer, D.: Sole-manrubia model of biological evolutions: some new insights. Physica A, 318, 461–468 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  27. Sole, R.V., Manrubia, S.C.: Extinction and self-organised criticality in a model of large scale evolution. Phys. Rev. E, 54, 42–45 (1996).

    Article  Google Scholar 

  28. Emerson, B.C., Kolm, N.: Species diversity can drive speciation. Nature, 434, 1015–1017 (2005).

    Article  Google Scholar 

  29. May, R.M. (ed): Stability and Complexity in Model Ecosystems in Monographs in Population Biology. Princeton University Press, Princeton, NJ (1974).

    Google Scholar 

  30. McCann, K.S.: The diversity stability debate. Nature, 405, 228–233 (2000).

    Article  Google Scholar 

  31. Haydon, D.T.: Maximally stable model ecosystems can be highly connected. Ecology, 81, 2631–2636 (2000).

    Article  Google Scholar 

  32. Dunne, J.A., Williams, R.J., Martinez, N.D.: Food web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. USA, 99, 12917–12922 (2002).

    Article  Google Scholar 

  33. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1–77 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Laird, S., Lawson, D., Jensen, H.J. (2008). The Tangled Nature Model of Evolutionary Ecology: An Overview. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_5

Download citation

Publish with us

Policies and ethics