Skip to main content

Deconstructing the Chlamydial Cell Wall

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 412))

Abstract

The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the “chlamydial anomaly.” In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29:949–959

    Article  PubMed  CAS  Google Scholar 

  • Abdelrahman YM, Rose LA, Belland RJ (2011) Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res 39:1843–1854

    Article  PubMed  CAS  Google Scholar 

  • Abromaitis S, Stephens RS (2009) Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 5:e1000357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Subtil A, Bhattacharya D et al (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbour AG, Amano K, Hackstadt T et al (1982) Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151:420–428

    PubMed  PubMed Central  CAS  Google Scholar 

  • Baud D, Goy G, Osterheld MC et al (2014) Role of Waddlia chondrophila placental infection in miscarriage. Emerg Infect Dis 20:460–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Baud D, Thomas V, Arafa A et al (2007) Waddlia chondrophila, a potential agent of human fetal death. Emerg Infect Dis 13:1239–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedson SP, Bland JOW (1932) A morphological study of psittacosis virus, with the description of a developmental cycle. Br J Exp Pathol 13:461–466

    PubMed Central  Google Scholar 

  • Belland RJ, Zhong G, Crane DD et al (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100:8478–8483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bobrovsky P, Manuvera V, Polina N et al (2016) Recombinant human peptidoglycan recognition proteins reveal antichlamydial activity. Infect Immun IAI.01495–15

    Google Scholar 

  • Borel N, Leonard C, Slade J et al (2016) Chlamydial antibiotic resistance and treatment failure in veterinary and human medicine. Curr Clin Microbiol Reports 3:10–18

    Article  Google Scholar 

  • Borel N, Pospischil A, Hudson AP et al (2014) The role of viable but non-infectious developmental forms in chlamydial biology. Front Cell Infect Microbiol 4:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Born TL, Blanchard JS (1999) Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 3:607–613

    Article  PubMed  CAS  Google Scholar 

  • Bowie WR (1986) In vitro activity of clavulanic acid, amoxicillin, and ticarcillin against Chlamydia trachomatis. Antimicrob Agents Chemother 29:713–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown WJ, Rockey DD (2000) Identification of an antigen localized to an apparent septum within dividing Chlamydiae. Infect Immun 68:708–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cascales E, Gavioli M, Sturgis JN et al (2000) Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol 38:904–915

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300–1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra I, Storey C, Falla TJ et al (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144:2673–2678

    Article  PubMed  CAS  Google Scholar 

  • Collingro A, Tischler P, Weinmaier T et al (2011) Unity in variety—the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Ulisse V, Fagioli M, Ghelardini P et al (2007) Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. Microbiology 153:124–138

    Article  PubMed  CAS  Google Scholar 

  • Darveaux JI, Lemanske RF (2014) Infection-related asthma. J Allergy Clin Immunol Pract 2:658–663

    Article  PubMed  PubMed Central  Google Scholar 

  • De Benedetti S, Bühl H, Gaballah A et al (2014) Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae. Front Cell Infect Microbiol 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Den Blaauwen T, Aarsman MEG, Vischer NOE et al (2003) Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 47:539–547

    Article  Google Scholar 

  • Dille S, Herbst K, Volceanov L et al (2014) Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the Chlamydial protease CPAF. PLoS ONE 9:e103220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domman D, Horn M, Embley TM et al (2015) Plastid establishment did not require a chlamydial partner. Nat Commun 6:6421

    Article  PubMed  CAS  Google Scholar 

  • Dziarski R, Kashyap DR, Gupta D (2012) Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb Drug Resist 18:280–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erridge C, Pridmore A, Eley A et al (2004) Lipopolysaccharides of bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53:735–740

    Article  PubMed  CAS  Google Scholar 

  • Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3:120143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Facchinelli F, Colleoni C, Ball SG et al (2013) Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci 18:673–679

    Article  PubMed  CAS  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Rogers JC, Gilbart J et al (1990) Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun 58:835–837

    PubMed  PubMed Central  CAS  Google Scholar 

  • Frandi A, Jacquier N, Théraulaz L et al (2014) FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat Commun 5:4200

    Article  PubMed  CAS  Google Scholar 

  • Friedman MG, Dvoskin B, Kahane S (2003) Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5:1013–1021

    Article  PubMed  Google Scholar 

  • Frohlich KM, Hua Z, Quayle AJ et al (2014) Membrane vesicle production by Chlamydia trachomatis as an adaptive response. Front Cell Infect Microbiol 4:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaballah A, Kloeckner A, Otten C et al (2011) Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS ONE 6:e25129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerding MA, Liu B, Bendezú FO et al (2009) Self-enhanced accumulation of FtsN at division dites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 191:7383–7401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerding MA, Ogata Y, Pecora ND et al (2007) The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63:1008–1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh AS, Chowdhury C, Nelson DE (2008) Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 16:309–317

    Article  PubMed  CAS  Google Scholar 

  • Ghuysen JM, Goffin C (1999) Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43:2339–2344

    PubMed  PubMed Central  CAS  Google Scholar 

  • Girardin SE, Boneca IG, Viala J et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872

    Article  PubMed  CAS  Google Scholar 

  • Goffin C, Fraipont C, Ayala JA et al (1996) The non-penicillin-binding module of the tripartite penicillin- binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded. J Bacteriol 178:5402–5409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grayston JT, Belland RJ, Byrne GI et al (2015) Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis 73:1–9

    Article  PubMed  CAS  Google Scholar 

  • Greub G (2009) Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15:18–28

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Yi W, Song JK et al (2008) Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8:141–151

    Article  PubMed  CAS  Google Scholar 

  • Halberstaedter L, von Prowazek S (1907) Ueber Zelleinschlüsse parasitärer Natur beim Trachom. Arb aus dem Kais Gesundheitsamt 26:44–47

    Google Scholar 

  • Hatch TP (1996) Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol 178:1–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henrichfreise B, Schiefer A, Schneider T et al (2009) Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 73:913–923

    Article  PubMed  CAS  Google Scholar 

  • Hesse L, Bostock J, Dementin S et al (2003) Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate: amino acid ligase activity. J Bacteriol 185:6507–6512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann N (2016) Invisible no longer: peptidoglycan in moss chloroplasts. Plant Cell tpc.00521.2016

    Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  PubMed Central  Google Scholar 

  • How S, Hobson D, Hart C (1984) Studies in vitro of the nature and synthesis of the cell wall of Chlamydia trachomatis. Curr Microbiol 10:269–274

    Article  CAS  Google Scholar 

  • Humann J, Lenz LL (2009) Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J Innate Immun 1:88–97

    Article  PubMed  CAS  Google Scholar 

  • Hurst EW (1953) Chemotherapy of virus diseases. Br Med Bull 9:180–185

    Article  PubMed  CAS  Google Scholar 

  • Inohara N, Ogura Y, Fontalba A et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J Biol Chem 278:5509–5512

    Article  PubMed  CAS  Google Scholar 

  • Jacquier N, Frandi A, Pillonel T et al (2014) Cell wall precursors are required to organize the chlamydial division septum. Nat Commun 5:3578

    Article  PubMed  CAS  Google Scholar 

  • Jacquier N, Frandi A, Viollier PH et al (2015a) Disassembly of a medial transenvelope structure by antibiotics during intracellular division. Chem Biol 22:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Jacquier N, Viollier PH, Greub G (2015b) The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 39:262–275

    Article  PubMed  CAS  Google Scholar 

  • Jenkin HM (1960) Preparation and properties of cell walls of the agent of meningopneumonitis. J Bacteriol 80:639–647

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jogler C, Waldmann J, Huang X et al (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson BA, Anker H, Meleney FL (1945) Bacitracin: a new antibiotic produced by a member of the B. subtilis Group. Science 102:376–377

    Article  PubMed  CAS  Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ et al (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386

    Article  PubMed  CAS  Google Scholar 

  • Kahane S, Gonen R, Sayada C et al (1993) Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol Lett 109:329–333

    Article  PubMed  CAS  Google Scholar 

  • Karala A-R, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277:2454–2462

    Article  PubMed  CAS  Google Scholar 

  • Kashyap DR, Wang M, Liu LH et al (2011) Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 17:676–683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemege KE, Hickey JM, Barta ML et al (2015) Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB. Mol Microbiol 95:365–382

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Lees WJ, Kempsell KE et al (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35:4923–4928

    Article  PubMed  CAS  Google Scholar 

  • Kintner J, Lajoie D, Hall J et al (2014) Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol 4:44

    Google Scholar 

  • Klöckner A, Otten C, Derouaux A et al (2014) AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat Commun 5:4201

    Article  PubMed  CAS  Google Scholar 

  • Kosma P (1999) Chlamydial lipopolysaccharide. Biochim Biophys Acta 1455:387–402

    Article  PubMed  CAS  Google Scholar 

  • Kresse H, Belsey MJ, Rovini H (2007) The antibacterial drugs market. Nat Rev Drug Discov 6:19–20

    Article  PubMed  CAS  Google Scholar 

  • Lambden P, Pickett M, Clarke I (2006) The effect of penicillin on Chlamydia trachomatis DNA replication. Microbiology 152:2573–2578

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Neuhaus FC (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110:978–987

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leaver M, Domínguez-Cuevas P, Coxhead JM et al (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457:849–853

    Article  PubMed  CAS  Google Scholar 

  • Leonard CA, Dewez F, Borel N (2016) Penicillin G-induced chlamydial stress response in a porcine strain of Chlamydia pecorum. Int J Microbiol 2016:1–10

    Article  CAS  Google Scholar 

  • Liechti G, Kuru E, Packiam M et al (2016) Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog 12:e1005590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liechti GW, Kuru E, Hall E et al (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–510

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (1995) Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584

    PubMed  PubMed Central  CAS  Google Scholar 

  • Manire GP, Tamura A (1967) Preparation and chemical composition of the cell walls of mature infectious dense forms of meningopneumonitis organisms. J Bacteriol 94:1178–1183

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto A (1979) Recent progress of electron microscopy in microbiology and its development in future: from a study of the obligate intracellular parasites, Chlamydia organisms. J Electron Microsc 28(Suppl):S57–S64

    Google Scholar 

  • Matsumoto A, Manire GP (1970) Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101:278–285

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matteï PJ, Neves D, Dessen A (2010) Bridging cell wall biosynthesis and bacterial morphogenesis. Curr Opin Struct Biol 20:749–755

    Article  PubMed  CAS  Google Scholar 

  • Maurin M, Bryskier A, Raoult D (2002) Antibiotic susceptibilities of Parachlamydia acanthamoeba in amoebae. Antimicrob Agents Chemother 46:3065–3067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maxted WR (1953) The use of bacitracin for identifying group A haemolytic streptococci. J Clin Pathol 6:224–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoy AJ, Adams NE, Hudson AO et al (2006) L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci 103:17909–17914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoy AJ, Maurelli AT (2006) Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14:70–77

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Maurelli AT (2005) Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity. Mol Microbiol 57:41–52

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-Acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185:1218–1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehlitz A, Karunakaran K, Herweg JA et al (2014) The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell Microbiol 16:1224–1243

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos AS, Livaditis IG, Gougoutas V (2011) The revival of fosfomycin. Int J Infect Dis 15:e732–e739

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima SY, Nakamura M, Uzuka A et al (2014) FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. Front Plant Sci 5:459

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi T, Breukink E (2014) The chlamydial anomaly clarified? ChemBioChem 15:1391–1392

    Article  PubMed  CAS  Google Scholar 

  • Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moulder JW (1993) Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2:87–99

    Google Scholar 

  • Moulder JW (1966) The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol 20:107–130

    Article  PubMed  CAS  Google Scholar 

  • Moulder JW, Novosel DL, Officer JE (1963) Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J Bacteriol 85:707–711

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nadesalingam J, Dodds AW, Reid KBM et al (2005) Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol 175:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan UM (2012) Immune recognition and host cell response during Chlamydia infection. In: Tan M, Bavoil PM (eds) Intracellular pathogens I: chlamydiales. ASM Press, Washington, DC, pp 217–239

    Google Scholar 

  • Nelson DE, Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182:1714–1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newton GGF, Abraham EP (1950) Ayfivin and bacitracin: resolution of crude products into similar series of peptides. Biochem J 47:257–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson TL, Olinger L, Chong K et al (2003) Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 185:3179–3189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunes A, Gomes JP (2014) Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol 23:49–64

    Article  PubMed  CAS  Google Scholar 

  • O’Connell CM, Ionova IA, Quayle AJ et al (2006) Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions: evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 281:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Otten C, De Benedetti S, Gaballah A et al (2015) Co-solvents as stabilizing agents during heterologous overexpression in Escherichia coli—application to chlamydial penicillin-binding protein 6. PLoS ONE 10:e0122110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouellette SP, Karimova G, Subtil A et al (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85:164–178

    Article  PubMed  CAS  Google Scholar 

  • Ouellette SP, Rueden KJ, Abdelrahman YM et al (2015) Identification and partial characterization of potential FtsL and FtsQ homologs of Chlamydia. Front Microbiol 6:1264

    PubMed  PubMed Central  Google Scholar 

  • Ouellette SP, Rueden KJ, Gauliard E et al (2014) Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY. Front Microbiol 5:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Packiam M, Weinrick B, Jacobs WR et al (2015) Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc Natl Acad Sci USA 112:11660–11665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patin D, Bostock J, Blanot D et al (2009) Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE. J Bacteriol 191:7430–7435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patin D, Bostock J, Chopra I (2012) Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem. Arch Microbiol 194:505–512

    Article  PubMed  CAS  Google Scholar 

  • Pavelka MS (2007) Another brick in the wall. Trends Microbiol 15:147–149

    Article  PubMed  CAS  Google Scholar 

  • Perkins HR, Allison AC (1963) Cell-wall constituents of rickettsiae and psittacosis-lymphogranuloma organisms. J Gen Microbiol 30:469–480

    Article  PubMed  CAS  Google Scholar 

  • Phillips-Campbell R, Kintner J, Schoborg RV (2014) Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. Antimicrob Agents Chemother 58:1782–1784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilhofer M, Aistleitner K, Biboy J et al (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 4:2856

    Article  PubMed  CAS  Google Scholar 

  • Porter E, Yang H, Yavagal S et al (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73:4823–4833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price NP, Momany FA (2005) Modeling bacterial UDP-HexNAc: Polyprenol-P HexNAc-1-P transferases. Glycobiology 15:29–42

    Article  CAS  Google Scholar 

  • Rantala A, Lajunen T, Juvonen R et al (2011) Low mannose-binding lectin levels and MBL2 gene polymorphisms associate with Chlamydia pneumoniae antibodies. Innate Immun 17:35–40

    Article  PubMed  CAS  Google Scholar 

  • Ripa KT, Mårdh PA (1977) Cultivation of Chlamydia trachomatis in cycloheximide-treated mccoy cells. J Clin Microbiol 6:328–331

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rocaboy M, Herman R, Sauvage E et al (2013) The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol Microbiol 90:267–277

    PubMed  CAS  Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Structure of peptidoglycan. In: Rogers H, Perkins H, Ward J (eds) Microbial cell walls and membranes. Springer, Netherlands, pp 190–214

    Chapter  Google Scholar 

  • Russell AD, Chopra I (1990) Understanding antibacterial action and resistance, 2nd edn. Ellis Horwood, Chichester

    Google Scholar 

  • Satta G, Cornaglia G, Mazzariol A et al (1995) Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob Agents Chemother 39:812–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauvage E, Derouaux A, Fraipont C et al (2014) Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE 9:e98042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauvage E, Kerff F, Terrak M et al (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  PubMed  CAS  Google Scholar 

  • Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider T, Sahl HG (2010) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169

    Article  PubMed  CAS  Google Scholar 

  • Siewert G, Strominger JL (1967) Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci USA 57:767–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skilton RJ, Cutcliffen LT, Barlow D et al (2009) Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS ONE 4:e7723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slovak PM, Porter SL, Armitage JP (2006) Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J Bacteriol 188:1691–1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spratt BG, Jobanputra V, Zimmermann W (1977) Binding of thienamycin and clavulanic acid to the penicillin-binding proteins of Escherichia coli K-12. Antimicrob Agents Chemother 12:406–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  PubMed  CAS  Google Scholar 

  • Storey C, Chopra I (2001) Affinities of β-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities. Antimicrob Agents Chemother 45:303–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strominger JL, Ito E, Threnn RH (1960) Competitive inhibition of enzymatic reactions by oxamycin. J Am Chem Soc 82:998–999

    Article  CAS  Google Scholar 

  • Subtil A, Collingro A, Horn M (2014) Tracing the primordial Chlamydiae: extinct parasites of plants? Trends Plant Sci 19:36–43

    Article  PubMed  CAS  Google Scholar 

  • Sukhithasri V, Nisha N, Biswas L et al (2013) Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 168:396–406

    Article  PubMed  CAS  Google Scholar 

  • Swanson AF, Ezekowitz RAB, Lee A et al (1998) Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect Immun 66:1607–1612

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima M, Samejima T, Yoshitoshi N (1959) Morphology of meningopneumonitis virus exposed to penicillin as observed with the electron microscope. J Bacteriol 77:23–34

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura A, Manire GP (1967) Preparation and chemical composition of the cell membranes of developmental reticulate forms of meningopneumonitis organisms. J Bacteriol 94:1184–1188

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura A, Matsumoto A, Manire GP et al (1971) Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci. J Bacteriol 105:355–360

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tatar LD, Marolda CL, Polischuk AN et al (2007) An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153:2518–2529

    Article  PubMed  CAS  Google Scholar 

  • Taylor BD, Haggerty CL (2011) Management of Chlamydia trachomatis genital tract infection: screening and treatment challenges. Infect Drug Resist 4:19–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor-Robinson D, Bébéar C (1997) Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J Antimicrob Chemother 40:622–630

    Article  PubMed  CAS  Google Scholar 

  • Teh B, Grayson ML, Johnson PDR et al (2012) Doxycycline versus macrolides in combination therapy for treatment of community-acquired pneumonia. Clin Microbiol Infect 18:e71–e73

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    Article  PubMed  CAS  Google Scholar 

  • Tydell CC, Yuan J, Tran P et al (2006) Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J Immunol 176:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Typas A, Banzhaf M, Gross CA et al (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    Article  CAS  Google Scholar 

  • Uehara T, Bernhardt TG (2011) More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 14:698–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uehara T, Parzych KR, Dinh T et al (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Ploeg R, Verheul J, Vischer NOE et al (2013) Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli. Mol Microbiol 87:1074–1087

    Article  PubMed  CAS  Google Scholar 

  • van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519

    Article  PubMed  CAS  Google Scholar 

  • Vanrompay D, Ducatelle R, Haesebrouck F (1995) Chlamydia psittaci infections: a review with emphasis on avian chlamydiosis. Vet Microbiol 45:93–119

    Article  PubMed  CAS  Google Scholar 

  • Vats P, Rothfield L (2007) Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci USA 104:17795–17800

    Article  PubMed  PubMed Central  Google Scholar 

  • Vats P, Shih YL, Rothfield L (2009) Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol Microbiol 72:170–182

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W, Joris B, Charlier P et al (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70

    Article  PubMed  CAS  Google Scholar 

  • Walsh M, Kappus EW, Quinn TC (1987) In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. Antimicrob Agents Chemother 31:811–812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss E (1950) The effect of antibiotics on agents of the psittacosis-lymphogranuloma group: I. The effect of penicillin. J Infect Dis 87:249–263

    Article  PubMed  CAS  Google Scholar 

  • Welsh LE, Gaydos CA, Quinn TC (1992) In vitro evaluation of activities of azithromycin, erythromycin, and tetracycline against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrob Agents Chemother 36:291–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welter-Stahl L, Ojcius DM, Viala J et al (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76:616–633

    Article  PubMed  CAS  Google Scholar 

  • Wilmes M, Sahl HG (2014) Defensin-based anti-infective strategies. Int J Med Microbiol 304:93–99

    Article  PubMed  CAS  Google Scholar 

  • Wright HR, Turner A, Taylor HR (2008) Trachoma. Lancet 371:1945–1954

    Article  PubMed  Google Scholar 

  • Wyrick PB (2010) Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis 201(Suppl 2):S88–S95

    Article  PubMed  CAS  Google Scholar 

  • Wyrick PB, Knight ST (2004) Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother 54:79–85

    Article  PubMed  CAS  Google Scholar 

  • Yahashiri A, Jorgenson MA, Weiss DS (2015) Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proc Natl Acad Sci USA 112:11347–11352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang DC, Peters NT, Parzych KR et al (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:e1052–e1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DC, Tan K, Joachimiak A et al (2012) A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 85:768–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young KD (2014) Microbiology. A flipping cell wall ferry. Science 345:139–140

    Article  PubMed  CAS  Google Scholar 

  • Zahar JR, Lortholary O, Martin C et al (2009) Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 10:172–180

    PubMed  CAS  Google Scholar 

  • Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support was received by the intramural funding scheme of the Medical Faculty of Bonn, BONFOR. H.B. received a PhD fellowship from the Jürgen Manchot foundation. B.H. is associated member of the DFG Cluster of Excellence ImmunoSensation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Henrichfreise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klöckner, A., Bühl, H., Viollier, P., Henrichfreise, B. (2016). Deconstructing the Chlamydial Cell Wall. In: Häcker, G. (eds) Biology of Chlamydia . Current Topics in Microbiology and Immunology, vol 412. Springer, Cham. https://doi.org/10.1007/82_2016_34

Download citation

Publish with us

Policies and ethics