Skip to main content

The NPB/NPW Neuropeptide System and Its Role in Regulating Energy Homeostasis, Pain, and Emotion

  • Chapter
  • First Online:
Orphan G Protein-Coupled Receptors and Novel Neuropeptides

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 46))

Abstract

Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides that were recently identified as endogenous ligands for the previously orphan G-protein coupled receptors, GPR7 (NPBWR1) and GPR8 (NPBWR2). This neuropeptide system is thought to have a role in regulating feeding behavior, energy homeostasis, neuroendocrine function, and modulating inflammatory pain. Strong and discrete expression of their receptors in the extended amygdala suggests a potential role in regulating stress responses, emotion, anxiety and fear; however, there have been no functional studies to date to support this possibility. Future studies of NPB/NPW using both pharmacological and phenotypic analysis of genetically engineered mice will lead to further elucidation of the physiological role of this novel neuropeptide system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreis P, Rucinski M, Neri G, Conconi M, Petrelli L, Parnigotto P, Malendowicz L, Nussdorfer G (2005) Neuropeptides B and W enhance the growth of human adrenocortical carcinoma-derived NCI-H295 cells by exerting MAPK p42/p44-mediated proliferogenic and antiapoptotic effects. Int J Mol Med 16:1021–1028

    PubMed  CAS  Google Scholar 

  • Brezillon S, Lannoy V, Franssen JD, Le Poul E, Dupriez V, Lucchetti J, Detheux M, Parmentier M (2003) Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J Biol Chem 278:776–783. Epub 2002 Oct 2024

    Google Scholar 

  • Davenport A, Singh G (2005a) Neuropeptide W/neuropeptide B receptors—NPBW1. IUPHAR Receptor database, (doi:10.1786/080844542445)

    Google Scholar 

  • Davenport A, Singh G (2005b) Neuropeptide W/neuropeptide B receptors—NPBW2. IUPHAR Receptor database, (doi:10.1786/034846726310)

    Google Scholar 

  • Davis M, Shi C (1999) Extended amygdala and basal forebrain. Ann NY Acad Sci 877:281–291

    Article  PubMed  CAS  Google Scholar 

  • Fujii R, Yoshida H, Fukusumi S, Habata Y, Hosoya M, Kawamata Y, Yano T, Hinuma S, Kitada C, Asami T et al. (2002) Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem 277:34010–34016. Epub 32002 Jul 34012

    Google Scholar 

  • Hochol A, Belloni A, Rucinski M, Ziolkowska A, Di Liddo R, Nussdorfer G, Malendowicz L (2006) Expression of neuropeptides B and W and their receptors in endocrine glands of the rat. Int J Mol Med 18:1101–1106

    PubMed  CAS  Google Scholar 

  • Hochol A, Tortorella C, Ricinski M, Ziolkowska A, Nussdorfer G, Malendowicz L (2007) Effects of neuropeptides B and W on the rat pituitary-adrenocortical axis: in vivo and in vitro studies. Int J Mol Med 19:207–211

    PubMed  CAS  Google Scholar 

  • Ishii M, Fei H, Friedman JM (2003) Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci USA 100:10540–10545. Epub 12003 Aug 10518

    Google Scholar 

  • Jackson VR, Lin SH, Wang Z, Nothacker HP, Civelli O (2006) A study of the rat neuropeptide B/neuropeptide W system using in situ techniques. J Comp Neurol 497:367–383

    Article  PubMed  CAS  Google Scholar 

  • Kelly MA, Beuckmann CT, Williams SC, Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG, Yanagisawa M (2005) Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci USA 102:9942–9947

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Tanaka H, Motoike T, Ishii M, Williams SC, Yanagisawa M, Sakurai T (2006) Distribution of neuropeptide W immunoreactivity and mRNA in adult rat brain. Brain Res 1093:123–134

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Nguyen T, Porter CA, Cheng R, George SR, O'Dowd BF (1999) Two related G protein-coupled receptors: the distribution of GPR7 in rat brain and the absence of GPR8 in rodents. Brain Res Mol Brain Res 71:96–103

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Winsky-Sommerer R, Huitron-Resendiz S, Grace M, de Lecea L (2005) Injection of neuropeptide W into paraventricular nucleus of hypothalamus increases food intake. Am J Physiol Regul Integr Comp Physiol 288:R1727–R1732

    PubMed  CAS  Google Scholar 

  • Lucyk S, Miskolzie M, Kotovych G (2005) NMR conformational analyses on (des-bromo) neuropeptide B [1–23] and neuropeptide W [1–23]: the importance of alpha-helices, a cation-pi interaction and a beta-turn. J Biomol Struct Dyn 23:77–90

    PubMed  CAS  Google Scholar 

  • Mazzocchi G, Rebuffat P, Ziolkowska A, Rossi G, Malendowicz L, Nussdorfer G (2005) G protein receptors 7 and 8 are expressed in human adrenocortical cells, and their endogenous ligands neuropeptides B and w enhance cortisol secretion by activating adenylate cyclase- and phospholipase C-dependent signaling cascades. J Clin Endocrinol Metab 90:3466–3471

    Article  PubMed  CAS  Google Scholar 

  • Mondal MS, Yamaguchi H, Date Y, Shimbara T, Toshinai K, Shimomura Y, Mori M, Nakazato M (2003) A role for neuropeptide W in the regulation of feeding behavior. Endocrinology 144:4729–4733. Epub 2003 Aug 4727

    Google Scholar 

  • O'Dowd BF, Scheideler MA, Nguyen T, Cheng R, Rasmussen JS, Marchese A, Zastawny R, Heng HH, Tsui LC, Shi X et al. (1995) The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics 28:84–91

    Article  PubMed  Google Scholar 

  • Samson WK, Baker JR, Samson CK, Samson HW, Taylor MM (2004) Central neuropeptide B administration activates stress hormone secretion and stimulates feeding in male rats. J Neuroendocrinol 16:842–849

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Stumm R, Hollt V (2007) Immunofluorescent identification of neuropeptide B-containing nerve fibers and terminals in the rat hypothalamus. Neurosci Lett 411:67–71

    Article  PubMed  CAS  Google Scholar 

  • Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, Watanabe T, Asami T, Kitada C, Mori M et al. (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J Biol Chem 277:35826–35832. Epub 32002 Jul 35818

    Google Scholar 

  • Singh G, Maguire JJ, Kuc RE, Fidock M, Davenport AP (2004) Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res 1017:222–226

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA, Tsujino N et al. (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA 100:6251–6256. Epub 2003 Apr 6228

    Google Scholar 

  • Taylor M, Yuill E, Baker J, Ferri C, Ferguson A, Samson W (2005) Actions of neuropeptide W in paraventricular hypothalamus: implications for the control of stress hormone secretion. Am J Physiol Regul Integr Comp Physiol 288:R270–R275

    PubMed  CAS  Google Scholar 

  • Tim van B, Brian EH, Deirdre KL, Kathleen MK, Kazushige T, Emilio P, Motoyashi S, Louis ML, Robert JL (1995) Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784

    Article  Google Scholar 

  • Yamamoto T, Saito O, Shono K, Tanabe S (2005) Anti-hyperalgesic effects of intrathecally administered neuropeptide W-23, and neuropeptide B, in tests of inflammatory pain in rats. Brain Res 1045:97–106

    PubMed  CAS  Google Scholar 

  • Yu N, Kunitake T, Kato K, Nakazato M, Kannan H (2007) Effects of intracerebroventricular administration of neuropeptide W30 on neurons in the hypothalamic paraventricular nucleus in the conscious rat. Neurosci Lett [Epub ahead of print]

    Google Scholar 

  • Zaratin P, Quattrini A, Previtali S, Comi G, Hervieu G, Scheideler M (2005) Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Mol Cell Neurosci 28:55–63

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sakurai .

Editor information

Olivier Civelli Qun-Yong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hondo, M., Ishii, M., Sakurai, T. (2008). The NPB/NPW Neuropeptide System and Its Role in Regulating Energy Homeostasis, Pain, and Emotion. In: Civelli, O., Zhou, QY. (eds) Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Results and Problems in Cell Differentiation, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_056

Download citation

Publish with us

Policies and ethics