Skip to main content

Scaffolded DNA Origami: from Generalized Multicrossovers to Polygonal Networks

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1024, 1994.

    Google Scholar 

  2. J. Chen and N.C. Seeman. The synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350:631–633, 1991.

    Article  Google Scholar 

  3. D.R. Duckett, A.I.H. Murchie, S. Diekmann, E. von Kitzing, B. Kemper, and D.M.J. Lilley. The structure of the Holliday junction, and its resolution. Cell, 55:79–89, 1988.

    Article  Google Scholar 

  4. T.-J. Fu and N.C. Seeman. DNA double-crossover molecules. Biochemistry, 32:3211–3220, 1993.

    Article  Google Scholar 

  5. Y. He, Y. Chen, H. Liu, A.E. Ribbe, and C. Mao. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. Journal of the American Chemical Society, 10:1021, 2005.

    Google Scholar 

  6. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society, 122:1848–1860, 2000.

    Article  Google Scholar 

  7. C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407(6803):493–496, 2000.

    Article  Google Scholar 

  8. C.D. Mao, W.Q. Sun, and N.C. Seeman. Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society, 121:5437–5443, 1999.

    Article  Google Scholar 

  9. A.I.H. Murchie, R.M. Clegg, E. von Kitzing, D.R. Duckett, S. Diekmann, and D.M.J. Lilley. Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature, 341:763–766, 1989.

    Article  Google Scholar 

  10. P.W.K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology, 2(12):e424, 2004.

    Article  Google Scholar 

  11. P.W.K. Rothemund. Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA origami. (submitted), 2005.

    Google Scholar 

  12. P. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D.K. Fygenson, E. Winfree. Design and characterization of programmable DNA nanotubes. Journal of the American Chemical Society, 26(50):16344–16353, 2004.

    Article  Google Scholar 

  13. P.W.K. Rothemund. DNA self-assembly with floppy motifs — single crossover lattices. Foundations of Nanoscience, Self-Assembled Architectures and Devices, Proceedings of FNANO’05 (J.H. Reif eds.) 185–186, 2005.

    Google Scholar 

  14. N.C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology, 99:237–247, 1982.

    Article  Google Scholar 

  15. N.C. Seeman. Construction of three-dimensional stick figures from branched DNA. DNA and Cell Biology, 7(10):475–486, 1991.

    Article  Google Scholar 

  16. Z.Y. Shen, H. Yan, T. Wang, and N.C. Seeman. Paranemic crossover DNA: A generalized Holliday structure with applications in nanotechnology. Journal of the American Chemical Society, 126:1666–1674, 2004.

    Article  Google Scholar 

  17. W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nanoletters, 4(7):1203–1207, 2004.

    Google Scholar 

  18. W.B. Sherman and N.C. Seeman. The design of nucleic acid nanotubes. Journal of Biomolecular Structure and Dynamics, 20(6):930–931, 2003.

    Google Scholar 

  19. W.M. Shih, J.D. Quispe, and G.F. Joyce. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6453):618–621, 2004.

    Article  Google Scholar 

  20. J.S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126(35):10834–10835, 2004.

    Article  Google Scholar 

  21. E. Winfree. On the computational power of DNA annealing and ligation. In R.J. Lipton and E.B. Baum, editors, DNA Based Computers, DIMACS, AMS Press, Providence, RI, 27:199–221, 1996.

    Google Scholar 

  22. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539–544, 1998.

    Article  Google Scholar 

  23. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled by hybridization topology. Nature, 415:62–65, 2002.

    Article  Google Scholar 

  24. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301:1882–1884, 2003.

    Article  Google Scholar 

  25. P. Yin, H. Yan, X.G. Daniell, A.J. Turberfield, and J.H. Reif. A unidirectional DNA walker that moves autonomously along a track. Angewandte Chemie International Edition, 43(37):4906–4911, 2004.

    Article  Google Scholar 

  26. B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, and J.L. Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406:605–608, 2000.

    Article  Google Scholar 

  27. Y. Zhang and N.C. Seeman. The construction of a DNA truncated octahedron. Journal of the American Chemical Society, 116:1661–1669, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothemund, P.W.K. (2006). Scaffolded DNA Origami: from Generalized Multicrossovers to Polygonal Networks. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics