Skip to main content
Log in

Asymptotic analysis of noise sensitivity in a neuronal burster

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A combination of asymptotic approaches provides a new analysis of the effect of small noise on the bursting cycle of a neuronal burster of elliptic type (type III). The analysis is applied to a stochastic model of an excitable spine, with an activity-dependent stem conductance, that exhibits conditional burst dynamics. First, we give an asymptotic approximation to the probability density for the state of the system. This density is used to compute several quantities which describe the influence of the noise on the transition from the silent to the active phase. Second, we also use a multiscale method to provide a reduced system for analysing the effect of noise on the transition out of the active phase. The combination of these two approaches results in a new framework for a quantitative description of how noise shortens the burst cycle, which measures the significant influence of small noise. For the stochastic spine model, this study suggests that small amplitude noise can significantly influence the activity-dependent morphological plasticity of dendritic spines. The techniques used in this paper combine probabilistic and asymptotic methods, and have been generalized for other noisy nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, S. M. and J. Rinzel (1991). Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J. Neurophysiol. 65, 874–890.

    Google Scholar 

  • Baer, S. M. and K. R. Zaremba (1998). Bursting oscillations in an idealized model for an activity-dependent spine, in Advance Topics in Biomathematics, L. Chen, S. Ruan and J. Zhu (Eds), Singapore: World Scientific.

    Google Scholar 

  • Baer, S. M., T. Erneux and J. Rinzel (1989). The slow passage through a Hopf bifurcation: delay, memory effects and resonance. SIAM J. Appl. Math. 49, 55–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Jacob, E., D. J. Bergman, B. J. Matkowsky and Z. Schuss (1982). The lifetime of oscillatory steady states. Phys. Rev. A 26, 2805–2816.

    Article  Google Scholar 

  • Bertram, R. and A. Sherman (2000). Dynamical complexity and temporal plasticity in pancreatic beta-cells. J. Biosci. 25, 197–209.

    Google Scholar 

  • Bertram, R., M. J. Butte, T. Kiemel and A. Sherman (1995). Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439.

    Article  MATH  Google Scholar 

  • Chasman, L. (2000). Research Experience for Undergraduates Project, http://www.math.umn.edu/∼rachel/reu.

  • Chay, T. R. and H. S. Kang (1988). Role of single-channel stochastic noise on bursting clusters of pancreatic β-cells. Biophys. J. 54, 427–435.

    Google Scholar 

  • Del Negro, C. A., C-F. Hsiao, S. H. Chandler and A. Garfinkel (1998). Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys. J. 75, 174–182.

    Google Scholar 

  • De Vries, G. (1998). Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci. 8, 281–316.

    Article  MATH  MathSciNet  Google Scholar 

  • De Vries, G. and A. Sherman (2000). Channel sharing in pancreatic beta-cells revisited: enhancement of emergent bursting by noise. J. Theor. Biol. 207, 513–530.

    Article  Google Scholar 

  • Ermentrout, G. B. and N. Kopell (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl Math. 46, 233–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Georgiou, M. and T. Erneux (1992). Pulsating laser oscillations depend on extremely-small-amplitude noise. Phys. Rev. A 45, 6636–42.

    Article  Google Scholar 

  • Golubitsky, M., K. Josic and T. J. Kaper (2001). An unfolding theory approach to bursting in fast-slow systems, in Global Analysis of Dynamical Systems, Festschrift Dedicated to Floris Takens for his 60th Birthday, H. Broer, B. Krauskopf and G. Vegter (Eds), Bristol: Institute of Physics.

    Google Scholar 

  • Harris, K. M. and S. B. Kater (1994). Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371.

    Article  Google Scholar 

  • Hille, B. (1992). Ionic Channels of Excitable Membranes, Sunderland, MA: Sinauer.

    Google Scholar 

  • Hughes, D. and M. R. E. Proctor (1990). Chaos and the effect of noise in a model of three-wave mode coupling. Physica D 46, 163–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. Int. J. Bifurcation Chaos 10, 1171–1266.

    Article  MathSciNet  MATH  Google Scholar 

  • Keener, J. and J. Sneyd (1998). Mathematical Physiology, New York: Springer.

    MATH  Google Scholar 

  • Kuske, R. (1999). Probability densities for noisy delay bifurcations. J. Stat. Phys. 96, 797–816.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuske, R. (2000). Gradient particle solutions of Fokker-Planck equations for noisy delay bifurcations. SIAM J. Sci. Comp. 22, 351–367.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuske, R. and G. Papanicolaou (1998). Invariant measure for noise simplified dynamics. Physica D 120, 255–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, J. P., W. Rall and J. Rinzel (1985). Synaptic amplification by active membrane in dendritic spines. Brain Res. 325, 325–330.

    Article  Google Scholar 

  • Muller, D., N. Toni and P. A. Buchs (2000). Spine changes associated with long-term potentiation. Hippocampus 10, 596–604.

    Article  Google Scholar 

  • Neu, J. C. (1979). Coupled chemical oscillators. SIAM J. Appl. Math. 37, 307–315.

    Article  MATH  MathSciNet  Google Scholar 

  • Rall, W. and H. Agmon-Snir (1998). Cable theory for dendritic neurons, in Methods in Neuron Modeling, C. Koch and I. Segev (Eds), Cambridge, MA: MIT Press.

    Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences, Lecture Notes in Biomath, E. Teramoto and M. Yamaguti (Eds), Berlin: Springer.

    Google Scholar 

  • Rinzel, J. and S. M. Baer (1988). Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. Biophys. J. 54.

  • Rinzel, J. and W. C. Troy (1982). Bursting phenomena in a simplified Oregonator flow system model. J. Chem. Phys. 76, 1775–1789.

    Article  MathSciNet  Google Scholar 

  • Schuss, Z. (1980). Theory and Applications of Stochastic Differential Equations, New York: Wiley.

    MATH  Google Scholar 

  • Schuss, Z. and R. Eisenberg (2001). Diffusion: a Stochastic Dynamics Approach, Chapter 16, preprint.

  • Segev, I. and W. Rall (1988). Computational study of an excitable dendritic spine. J. Neurophysiol. 60, 499–523.

    Google Scholar 

  • Sherman, A., J. Rinzel and J. Keizer (1988). Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425.

    Article  Google Scholar 

  • Maier, R. S. and D. L. Stein (1997). Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57, 752–790.

    Article  MathSciNet  MATH  Google Scholar 

  • McClintock, P. V.E. and F. Moss (1986). Stochastic postponement of critical onsets in a bistable system, in Noise in Physical Systems and 1/f Noise, A. D’Amico and P. Mazzetti (Eds), Amsterdam: Elsevier.

    Google Scholar 

  • Rose, C. R., Y. Kovalchuk, J. Eilers and A. Konnerth (1999). Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch. 439, 201–207.

    Article  Google Scholar 

  • Shardlow, T. (2000). Stochastic perturbations of the Allen-Cahn equation. Electron. J. Diff. Eqns 2000, 1.

    Google Scholar 

  • Shepherd, G. M. (1996). The dendritic spine: a multifunctional integrative unit. J. Neurophysiol. 75, 2197–2210.

    Google Scholar 

  • Shepherd, G. M., R. K. Brayton, J. P. Miller, I. Segev, J. Rinzel and W. Rall (1985). Signal enhancement in distal cortical dendrites by means of interaction between active dendritic spines. Proc. Natl Acad. Sci. 2192–2195.

  • Stocks, N. G., R. Mannella and P. V.E. McClintock (1989). Influence of random fluctuations on delayed bifurcations: the case of additive white noise. Phys. Rev. A 40, 5361–5369.

    Article  Google Scholar 

  • Stone, E. and D. Armbruster (1999). Noise and O(1) amplitude effects on heteroclinic cycles. Chaos 9, 499.

    Article  MATH  Google Scholar 

  • Wang, X-J., J. Rinzel and M. Arbib (1995). Oscillatory and bursting properties of neurons, in The Handbook of Brain Theory and Neural Networks, Cambridge, MA: MIT Press.

    Google Scholar 

  • Wu, H.-Y. and S. M. Baer (1998). Analysis of an excitable dendritic spine with an activity-dependent stem conductance. J. Math. Biol. 36, 569–592.

    Article  MATH  Google Scholar 

  • Yuste, R., A. Majewska and K. Holthoff (2000). From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci. 7, 653–659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuske, R., Baer, S.M. Asymptotic analysis of noise sensitivity in a neuronal burster. Bull. Math. Biol. 64, 447–481 (2002). https://doi.org/10.1006/bulm.2002.0279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0279

Keywords

Navigation