Skip to main content

Advertisement

Log in

Modeling immune responses with handling time

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Simple predator-prey type models have brought much insight into the dynamics of both nonspecific and antigen-specific immune responses. However, until now most attention has been focused on examining how the dynamics of interactions between the parasite and the immune system depends on the nature of the function describing the rate of activation or proliferation of immune cells in response to the parasite. In this paper we focus on the term describing the killing of the parasite by cell-mediated immune responses. This term has previously been assumed to be a simple mass-action term dependent solely on the product of the densities of the parasite and the immune cells and does not take into account a handling time (which we define as the time of interaction between an immune cell and its target, during which the immune cell cannot interact with and/or destroy additional targets). We show how the handling time (i) can be incorporated into simple models of nonspecific and specific immunity and (ii) how it affects the dynamics of both nonspecific and antigen-specific immune responses, and in particular the ability of the immune response to control the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. O. and T. A. Hamilton (1984). The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318.

    Article  Google Scholar 

  • Aderem, A. and D.-M. Underhill (1999). Mechanisms of phagocytosis in macrophages. Ann. Rev. Immunol. 17, 593–623.

    Article  Google Scholar 

  • Agur, Z., D. Abiri and H. T. Van der Ploeg (1989). Ordered appearance of antigenic variants of africain trypanosomes in a mathematical model based on a stochastic process and immune-selection against putative switch intermediates. Proc. Natl Acad. Sci. USA 86, 9626–9630.

    Article  Google Scholar 

  • Antia, R. and J. Koella (1994). A model of nonspecific immunity. J. Theor. Biol. 168, 141–150.

    Article  Google Scholar 

  • Antia, R., J. Koella and V. Perrot (1996). Models of the within-host dynamics of persistent mycobacterial infections. Proc. R. Soc. Lond. B 263, 257–263.

    Google Scholar 

  • Bancroft, G. J., M. J. Bosma, G. C. Bosma and E. R. Unanue (1986). Regulation of macrophage IA expression in mice with severe combined immunodeficiency—induction of IA expression by a T-cell-independent mechanism. J. Immunol. 137, 4–9.

    Google Scholar 

  • Bancroft, G. J., R. D. Schreiber and E. R. Unanue (1991). Natural immunity: a T-cell independent pathway of macrophage activation defined in the SCID mouse. Immunol. Rev. 124, 5–24.

    Article  Google Scholar 

  • Bazykin, A. D. (1975). Structural and dynamic stability of model predator-prey systems, IIASA Workshop on Computation of Stability Regions and Equilibria.

  • Bell, G. I. (1970). Mathematical model of clonal selection and antibody production. Nature 228, 739–744.

    Article  Google Scholar 

  • Bell, G. I. (1973). Predator-prey equations simulating an immune response. Math. Biosci. 16, 291–314.

    Article  MATH  Google Scholar 

  • Bennett, S. R. M., F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. A. P. Miller and W. R. Heath (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393, 478–480.

    Article  Google Scholar 

  • Berke, G. (1994). The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu. Rev. Immunol. 12, 735–773.

    Article  Google Scholar 

  • Borghans, J. A. M., R. J. De Boer and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.

    Article  Google Scholar 

  • Burnett, F. M. (1959). The Clonal Selection Theory of Immunity, Nashville: Vanderbilt University Press, and Cambridge: Cambridge University Press.

    Google Scholar 

  • Burroughs, N. J. and D. A. Rand (1998). Dynamics of T-cell antagonism enhanced viral diversity and survival. Proc. R. Soc. Lond. B 265, 529–535.

    Article  Google Scholar 

  • Coddington, E. A. and N. Levinson (1955). Theory of Ordinary Differential Equations, New York: McGraw-Hill.

    Google Scholar 

  • Coppel, W. A. (1965). Stability and Asymptotic Behavior of Differential Equations, Boston: D. C. Heath.

    Google Scholar 

  • Crawley, M. J. (1992). Natural Enemies: The Population Biology of Predators, Parasites and Diseases, M. J. Crawley (Ed.), Oxford, Boston: Blackwell Scientific Publications.

    Google Scholar 

  • De Boer, R. J. and A. S. Perelson (1995). Towards the general function describing T-cell proliferation. J. Theor. Biol. 175, 567–576.

    Article  Google Scholar 

  • Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen and M. L. Dustin (1999). The immunological synapse: a molecular machine controlling T-cell activation. Science 285, 221–227.

    Article  Google Scholar 

  • Greenberg, S. and S. G. Silverstein (1993). Phagocytosis, in Fundamental Immunology, 3rd edn, New York: Raven Press, pp. 941–965.

    Google Scholar 

  • Hale, J. K. and H. Kocak (1991). Dynamics and Bifurcations, New York-Berlin: Springer-Verlag.

    Google Scholar 

  • Hofbauer, J. and J. W.-H. So (1990). Multiple limit cycles for predator-prey models. Math. Biosci. 99, 71–75.

    Article  MathSciNet  Google Scholar 

  • Hsu, S.-B. (1978). On global stability of a predator-prey system. Math. Biosci. 39, 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  • Kevrikidis, I.-G., A.-D. Zecha and A.-S. Perelson (1988). Modeling dynamical aspects of the immune response; T cell proliferation and the effect of IL-Z in Theoretical Immunology, A.-S. Perelson (Ed.), Reading, MA: Addison-Wesley, pp. 167–197.

    Google Scholar 

  • Kuby, J. (1997). Immunology, 3rd edn, New York: H. Freeman.

    Google Scholar 

  • McLean, A. R. and T. B. L. Kirkwood (1990). A model of human immunodeficiency virus infection in T helper cell clones. J. Theor. Biol. 147, 177–203.

    Google Scholar 

  • Murali-Krishna, K., J. D. Altman, M. Suresh, D. J. D. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky and R. Ahmed (1998). Counting antigen-specific CD8+ T cells: A reevaluation of bystander activation during viral infection. Immunity 8, 177–187.

    Article  Google Scholar 

  • Perelson, A. S. and G. I. Bell (1982). Delivery of lethal hits by cytotoxic T lymphocytes in multicellular conjugates occurs sequentially but at random times. J. Immunol. 129, 2796–2801.

    Google Scholar 

  • Pilyugin, S., J. Mittler and R. Antia (1997). Modeling T-cell proliferation: an investigation of the consequences of the Hayflick limit. J. Theor. Biol. 186, 117–129.

    Article  Google Scholar 

  • Razvi, E. S., R. M. Welsh and H. I. McFarland (1995). In vivo state of antiviral CTL precursors. J. Immunol. 154, 620–632.

    Google Scholar 

  • Ridge, J. P., F. Di Rosa and P. Matzinger (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.

    Article  Google Scholar 

  • Schweitzer, A. N., J. Swinton and R. M. Anderson (1992). Complex outcomes in mouse leishmaniasis: a model for the dynamics of the Th1 response, in Theoretical and Experimental Insights into Immunology, A. S. Perelson and G. Weisbuch (Eds), NATO ASI Series H66, pp. 191–202, Berlin: Springer-Verlag.

    Google Scholar 

  • Valitutti, J. R., J. A. Sullivan, G. L. Mandell and V. H. Engelhard (1996). Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917–1921.

    Article  Google Scholar 

  • Weiss, A. (1993). T lymphocyte activation, in Fundamental Immunology, New York: Raven Press, pp. 467–505.

    Google Scholar 

  • Yanelli, J. R., J. A. Sullivan, G. L. Mandell and V. H. Engelhard (1986). Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J. Immunol. 136, 377–382.

    Google Scholar 

  • Zagury, D., J. Bernard, N. Thierness, M. Feldman and G. Berke (1975). Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation, killing and recycling at the single cell level. Eur. J. Immunol. 5, 818–822.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei S. Pilyugin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyugin, S.S., Antia, R. Modeling immune responses with handling time. Bull. Math. Biol. 62, 869–890 (2000). https://doi.org/10.1006/bulm.2000.0181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0181

Keywords

Navigation