Skip to main content
Log in

Pattern formation in a generalized chemotactic model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many models have been proposed for spatial pattern formation in embryology and analyzed for the standard case of zero-flux boundary conditions. However, relatively little attention has been paid to the role of boundary conditions on the form of the final pattern. Here we investigate, numerically, the effect of nonstandard boundary conditions on a model pattern generator, which we choose to be of a cell-chemotactic type. We specifically focus on the role of boundary conditions and the effects of scale and aspect ratio, and study the spatiotemporal dynamics of pattern formation. We illustrate the properties of the model by application to the spatiotemporal sequence of skeletal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bard, J. and I. Lauder (1974). How well does Turing’s theory of morphogenesis work? J. Theor. Biol. 45, 501–531.

    Article  Google Scholar 

  • Brümmer, F., G. Zempel, P. Buhle, J. C. Stein and D. F. Hulser (1991). Retinoic acid modulates gap junction permeability: A comparative study of dye spreading and ionic coupling in cultured cells. Exp. Cell. Res. 196, 158–163.

    Article  Google Scholar 

  • Chaplain, M. A. J. and A. M. Stuart (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Dillon, R., P. K. Maini, and H. G. Othmer (1993). Pattern formation in generalised Turing systems: I. Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32, 345–393.

    Article  MathSciNet  Google Scholar 

  • Ford, R. M. and D. A. Lauffenberger (1991). Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients. Bull. Math. Biol. 53, 721–749.

    Article  MATH  Google Scholar 

  • Grindrod, P., S. Sinha and J. D. Murray (1989). Steady state spatial patterns in a cell-chemotaxis model. IMA J. Math. Appl. Med. & Biol. 6, 69–79.

    MathSciNet  MATH  Google Scholar 

  • Gueron, S. and N. Liron (1989). A model of herd grazing as a travelling wave, chemotaxis and stability. J. Math. Biol. 27, 595–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Höfer, T., J. A. Sherratt and P. K. Maini (1995a). Dictyostelium discoideum: Cellular self-organisation in an excitable medium. Proc. Roy. Soc. Lond. B259, 249–257.

    Google Scholar 

  • Höfer, T., J. A. Sherratt and P. K. Maini (1995b). Cellular pattern formation during Dictyostelium aggregation. Physica D85, 425–444.

    Google Scholar 

  • Hunding, A. and M. Brøns (1990). Bifurcation in a spherical reaction diffusion system with imposed gradient. Physica D44, 285–302.

    Google Scholar 

  • Keller, E. F. and L. A. Segel (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Keller, E. F. and L. A. Segel (1971). Travelling bands of bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248.

    Article  Google Scholar 

  • Kulesa, P., G. C. Cruywagen, S. R. Lubkin, P. K. Maini, J. S. Sneyd and J. D. Murray (1995). Modelling spatial patterning of the primordia in the lower jaw of Alligator mississippiensis. J. Biol. Syst. 3, 975–985.

    Article  Google Scholar 

  • Lapidus, I. R. and R. Schiller (1976). A model for the chemotactic response of a bacterial population. Biophys. J. 16, 779–789.

    Article  Google Scholar 

  • Maini, P. K., M. R. Myerscough, K. H. Winters and J. D. Murray (1991). Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation. Bull. Math. Biol. 53, 701–719.

    Article  MATH  Google Scholar 

  • Maini, P. K. (1994). Coupled models for spatial organization in development. Ber. Bunsenges. Phys. Chem. 98, 1172–1175.

    Google Scholar 

  • Maini, P. K. and M. Solursh (1991). Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91–133.

    Article  Google Scholar 

  • Maini, P. K., D. Benson and J. A. Sherratt (1992). Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. & Biol. 9, 197–213.

    MathSciNet  MATH  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, New York: Springer-Verlag

    MATH  Google Scholar 

  • Murray, J. D., D. C. Deeming and M. J. W. Ferguson (1990). Size dependent pigmentation pattern formation in embryos of Alligator mississipiensis: Time of initiation of pattern formation mechanism. Proc. Roy. Soc. (London) B239, 279–293.

    Google Scholar 

  • Murray, J. D. and M. R. Myerscough (1991). Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360.

    Google Scholar 

  • Myerscough, M. R. (1988). A chemotactic model for biological pattern formation. DPhil thesis, Corpus Christi College, Oxford, U.K.

    Google Scholar 

  • Myerscough, M. R. and J. D. Murray (1992). Analysis of propagating pattern in a chemotaxis system. Bull. Math. Biol. 54, 77–94.

    Article  MATH  Google Scholar 

  • Nagorcka, B. N. (1989). Wavelike isomorphic prepatterning in development. J. Theor. Biol. 137, 127–162.

    MathSciNet  Google Scholar 

  • Newman, S. A. and H. L. Frisch (1979). Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668.

    Google Scholar 

  • Oster, G. F., J. D. Murray and A. K. Harris (1983). Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125.

    Google Scholar 

  • Oster, G. F., N. Shubin, J. D. Murray and P. Alberch (1988). Evolution and morphogenetic rules. The shape of the vertebrate limb in ontogeny and phylogeny. Evolution 45, 862–884.

    Article  Google Scholar 

  • Othmer, H. G. (1986). On the Newman-Frisch model of limb chondrogenesis. J. Theor. Biol. 121, 505–508.

    MathSciNet  Google Scholar 

  • Othmer, H. G. and A. Stevens (1997). Aggregation, blow-up and collapse: the ABCs of taxis in reinforced random walks. SIAM J. Appl. Math 57, 1044–1081.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt, J. A., E. H. Sage and J. D. Murray (1993). Chemical control of eucaryotic cell movement: a new model. J. Theor. Biol. 162, 23–40.

    Article  Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B237, 37–72.

    Google Scholar 

  • Winters, K. H. (1985). Entwife User Manual (Release 1), Theoretical Physics Division AERE, Harwell, Oxfordshire, U.K.

    Google Scholar 

  • Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myerscough, M.R., Maini, P.K. & Painter, K.J. Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26 (1998). https://doi.org/10.1006/bulm.1997.0010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0010

Keywords

Navigation