Skip to main content
Log in

Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths?

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analytically study the dynamics of evolving populations that exhibit metastability on the level of phenotype or fitness. In constant selective environments, such metastable behavior is caused by two qualitatively different mechanisms. On the one hand, populations may become pinned at a local fitness optimum, being separated from higher-fitness genotypes by a fitness barrier of low-fitness genotypes. On the other hand, the population may only be metastable on the level of phenotype or fitness while, at the same time, diffusing over neutral networks of selectively neutral genotypes. Metastability occurs in this case because the population is separated from higher-fitness genotypes by an entropy barrier: the population must explore large portions of these neutral networks before it discovers a rare connection to fitter phenotypes.

We derive analytical expressions for the barrier crossing times in both the fitness barrier and entropy barrier regime. In contrast with ‘landscape’ evolutionary models, we show that the waiting times to reach higher fitness depend strongly on the width of a fitness barrier and much less on its height. The analysis further shows that crossing entropy barriers is faster by orders of magnitude than fitness barrier crossing. Thus, when populations are trapped in a metastable phenotypic state, they are most likely to escape by crossing an entropy barrier, along a neutral path in genotype space. If no such escape route along a neutral path exists, a population is most likely to cross a fitness barrier where the barrier is narrowest, rather than where the barrier is shallowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adami, C. (1995). Self-organized criticality in living systems. Phys. Lett. A. 203, 29–32.

    Article  Google Scholar 

  • Barnett, L. (1998). Ruggedness and neutrality: the NKp family of fitness landscapes, in ALIFE VI, Available at: http://www.cogs.susx.ac.uk/users/lionelb/.

  • Bergman, A. and M. W. Feldman (1996). Question marks about the period of punctuation. Technical Report, Santa Fe Institute Working paper 96-02-006.

  • Christiansen, F. B., S. P. Otto, A. Bergman and M. W. Feldman (1998). Waiting with and without recombination: The time to production of a double mutant. Theor. Pop. Biol. 53, 199–215.

    Article  Google Scholar 

  • Crutchfield, J. P. and M. Mitchell (1995). The evolution of emergent computation. Proc. Natl. Acad. Sci. USA 92, 10742–10746.

    Google Scholar 

  • Crutchfield, J. P. and E. van Nimwegen (2000). The evolutionary unfolding of complexity, in Evolution as Computation, Lecture Notes in Computer Science, L. F. Landweber, E. Winfree, R. Lipton and S. Freeland (Eds), New York: Springer-Verlag, Santa Fe Institute Working Paper 99-02-015; adap-org/9903001.

    Google Scholar 

  • Derrida, B. and L. Peliti (1991). Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382.

    Article  Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissen. 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasispecies. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Elena, S. F., V. S. Cooper and R. E. Lenski (1996). Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804.

    Google Scholar 

  • Ewens, W. J. (1979). Mathematical Population Genetics, volume 9 of Biomathematics, New York: Springer-Verlag.

    Google Scholar 

  • Fontana, W. and P. Schuster (1998). Continuity in evolution: On the nature of transitions. Science 280, 1451–1455.

    Article  Google Scholar 

  • Frauenfelder, H. (Ed.) (1997). Landscape Paradigms in Physics and Biology. Concepts, Structures and Dynamics (Papers originating from the 16th Annual International Conference of the Center for Nonlinear Studies. Los Alamos, NM, USA, 13–17 May 1996), Amsterdam: Elsevier Science, Published as a special issue of Physica D 107, 2–4 (1997).

    Google Scholar 

  • Gardiner, C. W. (1985). Handbook of Stochastic Methods, New York: Springer-Verlag.

    Google Scholar 

  • Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312.

    Article  Google Scholar 

  • Gavrilets, S. (1999). A dynamical theory of speciation on holey adaptive landscapes. Am. Naturalist 154, 1–22.

    Article  Google Scholar 

  • Gavrilets, S. and J. Gravner (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. J. Theor. Biol. 184, 51–64.

    Article  Google Scholar 

  • Gould, S. J. and N. Eldredge (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3, 115–251.

    Google Scholar 

  • Harris, T. E. (1989). The Theory of Branching Processes, New York: Dover publications.

    Google Scholar 

  • Huynen, M., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401.

    Article  Google Scholar 

  • Kauffman, S. A. and S. Levin (1987). Towards a general theory of adaptive walks in rugged fitness landscapes. J. Theo. Bio. 128, 11–45.

    MathSciNet  Google Scholar 

  • Kimura, M. (1962). On the probability of fixation of mutant genes in a population. Genetics 47, 713–719.

    Google Scholar 

  • Kimura, M. (1964). Diffusion models in population genetics. J. Appl. Prob. 1, 177–232.

    Article  MATH  Google Scholar 

  • Kimura, M. (1983). The Neutral Theory of Molecular Evolution, Cambridge University Press.

  • Lande, R. (1985). Expected time for random genetic drift of a population between stable phenotype states. Proc. Natl. Acad. Sci. USA 82, 7641–7645.

    Article  MATH  MathSciNet  Google Scholar 

  • Macken, C. A. and A. S. Perelson (1989). Protein evolution in rugged fitness landscapes. Proc. Natl. Acad. Sci. USA 86, 6191–6195.

    Article  MathSciNet  Google Scholar 

  • Maynard Smith, J. (1970). Natural selection and the concept of a protein space. Nature 225, 563–564.

    Article  Google Scholar 

  • Newman, C. M., J. E. Cohen and C. Kipnis (1985). Neo-darwinian evolution implies punctuated equilibrium. Nature 315, 400–401.

    Article  Google Scholar 

  • Newman, M and R. Engelhardt (1998). Effect of neutral selection on the evolution of molecular species. Proc. R. Soc. Lond. B. 256, 1333–1338.

    Google Scholar 

  • Nowak, M. and P. Schuster (1989). Error thresholds of replication in finite populations, mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395.

    Google Scholar 

  • Prügel-Bennett, A. and J. L. Shapiro (1994). Analysis of genetic algorithms using statistical mechanics. Phys. Rev. Lett. 72, 1305–1309.

    Article  Google Scholar 

  • Reidys, C. M., P. F. Stadler and P. Schuster (1997). Generic properties of combinatory maps—Neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397.

    Article  Google Scholar 

  • van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry, Amsterdam: North-Holland.

    Google Scholar 

  • van Nimwegen, E. (1999). The statistical dynamics of epochal evolution, PhD thesis, University of Utrecht, Available electronically at: http://www.santafe.edu/projects/evca/ErikVanNimwegen.html.

  • van Nimwegen, E. and J. P. Crutchfield (2000a). Optimizing epochal evolutionary search: Population-size dependent theory, in Machine Learning, Santa Fe Institute Working Paper 98-10-090. adap-org/9810004, in press.

  • van Nimwegen, E. and J. P. Crutchfield (2000b). Optimizing epochal evolutionary search: Population-size independent theory, in the Special Issue on Evolutionary and Genetic Algorithms in Computational Mechanics and Engineering, D. Goldberg and K. Deb (Eds), Comput. Meth. Appl. Mech. Engng. 186, 171–194.

  • van Nimwegen, E., J. P. Crutchfield and M. Mitchell (1997). Finite populations induce metastability in evolutionary search. Phys. Lett. A 229, 144–150.

    Article  MathSciNet  Google Scholar 

  • van Nimwegen, E., J. P. Crutchfield and M. Mitchell (1999). Statistical dynamics of the Royal Road genetic algorithm, in the Special Issue on Evolutionary Computation, A. Eiben and G. Rudolph (Eds), Theoret. Comput. Sci. 229, 41–102

  • Weisbuch, G. (1991). Complex Systems Dynamics: An Introduction to Automata Networks, volume 2 of Santa Fe Institute Studies in the Sciences of Complexity, Lecture Notes, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution, in Proceedings of the Sixth International Congress of Genetics, Vol. 1, pp. 356–366.

    Google Scholar 

  • Wright, S. (1982). Character change, speciation, and the higher taxa. Evolution 36, 427–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erik van Nimwegen or James P. Crutchfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Nimwegen, E., Crutchfield, J.P. Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths?. Bull. Math. Biol. 62, 799–848 (2000). https://doi.org/10.1006/bulm.2000.0180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0180

Keywords

Navigation